Cryptocurrency in the Light of Sentiments : A Bibliometric Approach
DOI:
https://doi.org/10.17010/ijf/2024/v18i2/173521Keywords:
Cryptocurrency
, Sentiments, Bibliometric, Behavioral Finance, PRISMA.JEL Classification Codes
, G11, G15, G41, O3Paper Submission Date
, October 1, 2023, Paper sent back for Revision, December 10, Paper Acceptance Date, January 10, 2024, Paper Published Online, February 15, 2024Abstract
Purpose : Cryptocurrency has drawn interest from academia and business, particularly amid notable spikes in the price of Bitcoin. The presence of cryptocurrencies and their technology-focused investments are intimately related to investor behavior. Due to its unpredictability, mood has a greater impact on Bitcoin investing than technical factors. The purpose of this study was to perform a bibliometric review in this field.
Methodology : Using VOSviewer software, this article attempted to do a bibliometric study of papers on sentiments and cryptocurrencies included in the Scopus database. The study complied with the PRISMA framework, which is the recommended practice for systematic reviews.
Findings : The findings showed that this field is seeing a massive increase in research activity. A total of 483 distinct authors wrote 151 articles. Studies that examined changes in the Bitcoin industry have received the attention they deserve in finance publications. Three connected clusters were discovered by co-citation analysis, indicating that studies are looking at how cryptocurrencies work as financial market investments using social media sentiments.
Practical Implications : The study on cryptocurrency sentiments offered valuable insights for investors, policymakers, and the market. It informed decision-making on investments, risk management, and regulations, providing a foundation for practical tools in the dynamic cryptocurrency market. These insights will contribute to a resilient and sustainable ecosystem, guiding public awareness for responsible cryptocurrency use.
Originality : To the best of our knowledge, this work is the first in this developing field to do a bibliometric literature evaluation on Scopus articles.
Downloads
Published
How to Cite
Issue
Section
References
Abdul-Rahim, R., Khalid, A., Karim, Z. A., & Rashid, M. (2022). Exploring the driving forces of stock-cryptocurrency comovements during COVID-19 pandemic: An analysis using wavelet coherence and seemingly unrelated regression. Mathematics, 10(12), 2116. https://doi.org/10.3390/math10122116
Almeida, J., & Gonçalves, T. C. (2023). A systematic literature review of investor behavior in the cryptocurrency markets. Journal of Behavioral and Experimental Finance, 37, 100785. https://doi.org/10.1016/j.jbef.2022.100785
Anamika, A., & Subramaniam, S. (2022). Do news headlines matter in the cryptocurrency market? Applied Economics, 54(54), 6322–6338. https://doi.org/10.1080/00036846.2022.2061904
Anbaee Farimani, S., Vafaei Jahan, M., Milani Fard, A., & Tabbakh, S. R. (2022). Investigating the informativeness of technical indicators and news sentiment in financial market price prediction. Knowledge-Based Systems, 247, 108742. https://doi.org/10.1016/j.knosys.2022.108742
Aslam, N., Rustam, F., Lee, E., Washington, P. B., & Ashraf, I. (2022). Sentiment analysis and emotion detection on cryptocurrency related tweets using ensemble LSTM-GRU Model. IEEE Access, 10, 39313–39324. https://doi.org/10.1109/ACCESS.2022.3165621
Bahamazava, K., & Nanda, R. (2022). The shift of DarkNet illegal drug trade preferences in cryptocurrency: The question of traceability and deterrence. Forensic Science International: Digital Investigation, 40, 301377. https://doi.org/10.1016/j.fsidi.2022.301377
Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. The Journal of Finance, 61(4), 1645–1680. https://doi.org/10.1111/j.1540-6261.2006.00885.x
Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of Economic Perspectives, 21(2), 129–152. https://doi.org/10.1257/jep.21.2.129
Ballis, A., & Verousis, T. (2022). Behavioural finance and cryptocurrencies. Review of Behavioral Finance, 14(4), 545–562. https://doi.org/10.1108/RBF-11-2021-0256
Bianchi, D., Guidolin, M., & Pedio, M. (2023). The dynamics of returns predictability in cryptocurrency markets. The European Journal of Finance, 29(6), 583–611. https://doi.org/10.1080/1351847X.2022.2084343
Bouri, E., Roubaud, D., & Shahzad, S. J. (2020). Do Bitcoin and other cryptocurrencies jump together? The Quarterly Review of Economics and Finance, 76, 396–409. https://doi.org/10.1016/j.qref.2019.09.003
Caferra, R. (2022). Sentiment spillover and price dynamics: Information flow in the cryptocurrency and stock market. Physica A: Statistical Mechanics and its Applications, 593, 126983. https://doi.org/10.1016/j.physa.2022.126983
Chen, M., Qin, C., & Zhang, X. (2022). Cryptocurrency price discrepancies under uncertainty: Evidence from COVID-19 and lockdown nexus. Journal of International Money and Finance, 124, 102633. https://doi.org/10.1016/j.jimonfin.2022.102633
Chopra, M., & Saldi, R. (2022). Investment in Bitcoin : A delusion or diligence? Indian Journal of Finance, 16(7), 8–22. https://doi.org/10.17010/ijf/2022/v16i7/170632
Chu, J., Zhang, Y., & Chan, S. (2019). The adaptive market hypothesis in the high frequency cryptocurrency market. International Review of Financial Analysis, 64, 221–231. https://doi.org/10.1016/j.irfa.2019.05.008
Chursook, A., Yahya Dawod, A., Chanaim, S., Naktnasukanjn, N., & Chakpitak, N. (2022). Twitter sentiment analysis and expert ratings of initial coin offering fundraising: Evidence from Australia and Singapore markets. TEM Journal, 11(1), 44–55. https://doi.org/10.18421/TEM111-06
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525
Corbet, S., Goodell, J. W., & Günay, S. (2022). What drives DeFi prices? Investigating the effects of investor attention. Finance Research Letters, 48, 102883. https://doi.org/10.1016/j.frl.2022.102883
Corbet, S., Hou, Y., Hu, Y., Larkin, C., & Oxley, L. (2020). Any port in a storm: Cryptocurrency safe-havens during the COVID-19 pandemic. Economics Letters, 194, 109377. https://doi.org/10.1016/j.econlet.2020.109377
Corbet, S., Hou, Y., Hu, Y., Oxley, L., & Xu, D. (2021). Pandemic-related financial market volatility spillovers: Evidence from the Chinese COVID-19 epicentre. International Review of Economics & Finance, 71, 55–81. https://doi.org/10.1016/j.iref.2020.06.022
Corbet, S., Larkin, C., Lucey, B. M., Meegan, A., & Yarovaya, L. (2020a). The impact of macroeconomic news on Bitcoin returns. The European Journal of Finance, 26(14), 1396–1416. https://doi.org/10.1080/1351847X.2020.1737168
Corbet, S., Larkin, C., Lucey, B., Meegan, A., & Yarovaya, L. (2020b). Cryptocurrency reaction to FOMC Announcements: Evidence of heterogeneity based on blockchain stack position. Journal of Financial Stability, 46, 100706. https://doi.org/10.1016/j.jfs.2019.100706
Coulter, K. A. (2022). The impact of news media on Bitcoin prices: Modelling data driven discourses in the crypto-economy with natural language processing. Royal Society Open Science, 9(4), 220276. https://doi.org/10.1098/rsos.220276
Ding, W., Mazouz, K., & Wang, Q. (2019). Investor sentiment and the cross-section of stock returns: New theory and evidence. Review of Quantitative Finance and Accounting, 53(2), 493–525. https://doi.org/10.1007/s11156-018-0756-z
Fang, T., Su, Z., & Yin, L. (2020). Economic fundamentals or investor perceptions? The role of uncertainty in predicting long-term cryptocurrency volatility. International Review of Financial Analysis, 71, 101566. https://doi.org/10.1016/j.irfa.2020.101566
Gaies, B., Nakhli, M. S., Sahut, J. M., & Guesmi, K. (2021). Is Bitcoin rooted in confidence? – Unraveling the determinants of globalized digital currencies. Technological Forecasting and Social Change, 172, 121038. https://doi.org/10.1016/j.techfore.2021.121038
Garcia, D., & Schweitzer, F. (2015). Social signals and algorithmic trading of Bitcoin. Royal Society Open Science, 2(9), 150288. https://doi.org/10.1098/rsos.150288
Geng, J.-B., Du, Y.-J., Ji, Q., & Zhang, D. (2021). Modeling return and volatility spillover networks of global new energy companies. Renewable and Sustainable Energy Reviews, 135, 110214. https://doi.org/10.1016/j.rser.2020.110214
Gill, K., Kumar, H., & Singh, A. K. (2023). Evaluating the efficiency of the global cryptocurrency market. Indian Journal of Finance, 17(11), 8–25. https://doi.org/10.17010/ijf/2023/v17i11/173325
Hasan, S. H., Hasan, S. H., Ahmed, M. S., & Hasan, S. H. (2022). A novel cryptocurrency prediction method using optimum CNN. Computers, Materials & Continua, 71(1), 1051–1063. https://doi.org/10.32604/cmc.2022.020823
Hassan, M. K., Hudaefi, F. A., & Caraka, R. E. (2022). Mining netizen's opinion on cryptocurrency: Sentiment analysis of Twitter data. Studies in Economics and Finance, 39(3), 365–385. https://doi.org/10.1108/SEF-06-2021-0237
Hussain, S. J., Bouri, E., Roubaud, D., & Kristoufek, L. (2020). Safe haven, hedge and diversification for G7 stock markets: Gold versus bitcoin. Economic Modelling, 87, 212–224. https://doi.org/10.1016/j.econmod.2019.07.023
Huynh, T. L. (2023). When Elon Musk changes his tone, does Bitcoin adjust its tune? Computational Economics, 62(2), 639–661. https://doi.org/10.1007/s10614-021-10230-6
Kalariya, V., Parmar, P., Jay, P., Tanwar, S., Raboaca, M. S., Alqahtani, F., Tolba, A., & Neagu, B.-C. (2022). Stochastic neural networks-based algorithmic trading for the cryptocurrency market. Mathematics, 10(9), 1456. https://doi.org/10.3390/math10091456
Karim, S., Lucey, B. M., Naeem, M. A., & Uddin, G. S. (2022). Examining the interrelatedness of NFTs, DeFi tokens and cryptocurrencies. Finance Research Letters, 47(Part B), 102696. https://doi.org/10.1016/j.frl.2022.102696
Kim, K., Lee, S.-Y., & Assar, S. (2022). The dynamics of cryptocurrency market behavior: Sentiment analysis using Markov chains. Industrial Management & Data Systems, 122(2), 365–395. https://doi.org/10.1108/IMDS-04-2021-0232
Kini, A. N., & Basri, S. (2022). A framework for customer engagement behaviour in the financial services industry : A critical review of evidence. Indian Journal of Finance, 16(6), 27–43. https://doi.org/10.17010/ijf/2022/v16i6/169925
Kraaijeveld, O., & De Smedt, J. (2020). The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. Journal of International Financial Markets, Institutions and Money, 65, 101188. https://doi.org/10.1016/j.intfin.2020.101188
Ledwani, S., Chakraborty, S., & Digal, S. K. (2022). The evolution of Indian Journal of Finance : A retrospective review and future directions. Indian Journal of Finance, 16(4), 8–30. https://doi.org/10.17010/ijf/2022/v16i4/169172
Li, T. R., Chamrajnagar, A. S., Fong, X. R., Rizik, N. R., & Fu, F. (2019). Sentiment-based prediction of alternative cryptocurrency price fluctuations using gradient boosting tree model. Frontiers in Physics, 7. https://doi.org/10.3389/fphy.2019.00098
Liao, H., Tang, M., Luo, L., Li, C., Chiclana, F., & Zeng, X.-J. (2018). A bibliometric analysis and visualization of medical big data research. Sustainability, 10(1), 166. https://doi.org/10.3390/su10010166
Lohan, S., Sidhu, A., & Kakran, S. (2023). Impact of investors' attention on the global stock market: A bibliometric analysis. Indian Journal of Finance, 17(10), 21–42. https://doi.org/10.17010/ijf/2023/v17i10/170881
López-Cabarcos, M. Ã., Pérez-Pico, A. M., Piñeiro-Chousa, J., & Å ević, A. (2021). Bitcoin volatility, stock market and investor sentiment. Are they connected? Finance Research Letters, 38, 101399. https://doi.org/10.1016/j.frl.2019.101399
Mahdi, E., & Al-Abdulla, A. (2022). Impact of COVID-19 pandemic news on the cryptocurrency market and gold returns: A quantile-on-quantile regression analysis. Econometrics, 10(2), 26. https://doi.org/10.3390/econometrics10020026
Malik, S., & Kaur, S. (2021). Rationales and advantages of financing infrastructure through public – private partnerships: A systematic literature review. Indian Journal of Finance, 15(10), 28–43. https://doi.org/10.17010/ijf/2021/v15i10/166510
Mohan, A., & Bohra, N. S. (2023). Academic research on Indian mutual funds: A systematic review. Indian Journal of Finance, 17(5), 53–65. https://doi.org/10.17010/ijf/2023/v17i5/170161
Naeem, M. A., Mbarki, I., Suleman, M. T., Vo, X. V., & Shahzad, S. J. H. (2021). Does Twitter happiness sentiment predict cryptocurrency? International Review of Finance, 21(4), 1529–1538. https://doi.org/10.1111/irfi.12339
Naik, P. K., & Padhi, P. (2016). Investor sentiment, stock market returns and volatility: Evidence from National Stock Exchange of India. International Journal of Management Practice, 9(3), 213–237. https://doi.org/10.1504/IJMP.2016.077816
Narayanaswamy, T., & Karthika, P. (2018). Cryptocurrency: Invisible or invincible currency–answers for unanswered questions. Indian Journal of Finance, 12(6), 63–73. https://doi.org/10.17010/ijf/2018/v12i6/128140
Ngo, V. M., & Nguyen, H. H. (2022). Are fear and hope of the COVID-19 pandemic responsible for the V-shaped behaviour of global financial markets? A text-mining approach. Applied Economics Letters, 29(11), 1005–1015. https://doi.org/10.1080/13504851.2021.1904105
Ortu, M., Uras, N., Conversano, C., Bartolucci, S., & Destefanis, G. (2022). On technical trading and social media indicators for cryptocurrency price classification through deep learning. Expert Systems with Applications, 198, 116804. https://doi.org/10.1016/j.eswa.2022.116804
Parekh, R., Patel, N. P., Thakkar, N., Gupta, R., Tanwar, S., Sharma, G., Davidson, I. E., & Sharma, R. (2022). DL-GuesS: Deep learning and sentiment analysis-based cryptocurrency price prediction. IEEE Access, 10, 35398–35409. https://doi.org/10.1109/ACCESS.2022.3163305
Paul, J., Lim, W. M., O'Cass, A., Hao, A. W., & Bresciani, S. (2021). Scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR). International Journal of Consumer Studies, 45(4), 1–16. https://doi.org/10.1111/ijcs.12695
Polasik, M., Piotrowska, A. I., Wisniewski, T. P., Kotkowski, R., & Lightfoot, G. (2015). Price fluctuations and the use of Bitcoin: An empirical inquiry. International Journal of Electronic Commerce, 20(1), 9–49. https://doi.org/10.1080/10864415.2016.1061413
Raut, R. K., & Das, N. (2015). Behavioral prospects of individual investor decision making process: A review. Indian Journal of Finance, 9(4), 44–55. https://doi.org/10.17010/ijf/2015/v9i4/71457
Salamat, S., Lixia, N., Naseem, S., Mohsin, M., Zia-ur-Rehman., M., & Baig, S. A. (2020). Modeling cryptocurrencies volatility using GARCH models: A comparison based on normal and student's T-error distribution. Entrepreneurship and Sustainability Issues, 7(3), 1580–1596.
Serafini, G., Yi, P., Zhang, Q., Brambilla, M., Wang, J., Hu, Y., & Li, B. (2020). Sentiment-driven price prediction of the Bitcoin based on statistical and deep learning approaches. 2020 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN48605.2020.9206704
Shahzad, S. J. H., Bouri, E., Roubaud, D., Kristoufek, L., & Lucey, B. (2019). Is Bitcoin a better safe-haven investment than gold and commodities? International Review of Financial Analysis, 63, 322–330. https://doi.org/10.1016/j.irfa.2019.01.002
Singh, R., & Bhar, C. (2015). DSS for cash management in Indian microfinance institutions: A brief review of literature. Indian Journal of Finance, 9(3), 38–48. https://doi.org/10.17010/ijf/2015/v9i3/71513
Trigka, M., Kanavos, A., Dritsas, E., Vonitsanos, G., & Mylonas, P. (2022). The predictive power of a Twitter user's profile on cryptocurrency popularity. Big Data and Cognitive Computing, 6(2), 59. https://doi.org/10.3390/bdcc6020059
Valencia, F., Gómez-Espinosa, A., & Valdés-Aguirre, B. (2019). Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy, 21(6), 589. https://doi.org/10.3390/e21060589
van Raan, A. F. (2005). For your citations only? Hot topics in bibliometric analysis. Measurement: Interdisciplinary Research & Perspective, 3(1), 50–62. https://doi.org/10.1207/s15366359mea0301_7
Verma, R., & Verma, P. (2007). Noise trading and stock market volatility. Journal of Multinational Financial Management, 17(3), 231–243. https://doi.org/10.1016/j.mulfin.2006.10.003
Welch, V., Petticrew, M., Tugwell, P., Moher, D., O'Neill, J., Waters, E., & White, H. (2012). PRISMA-Equity 2012 extension: Reporting guidelines for systematic reviews with focus on health equity. PLoS Medicine, 9(10), e1001333. https://doi.org/10.1371/journal.pmed.1001333
Ye, Z., Wu, Y., Chen, H., Pan, Y., & Jiang, Q. (2022). A stacking ensemble deep learning model for Bitcoin price prediction using twitter comments on Bitcoin. Mathematics, 10(8), 1307. https://doi.org/10.3390/math10081307
Zhang, J., & Zhang, C. (2022). Do cryptocurrency markets react to issuer sentiments? Evidence from Twitter. Research in International Business and Finance, 61, 101656. https://doi.org/10.1016/j.ribaf.2022.101656