Viable Email Attacks and a Simple End-to-End Security
Solution

* Shushan Zhao

Keywords: Attack, email, security, signature, verification

Abstract

Many attacks, scams, and malware threats are based on or spread through emails nowadays. Although people have been
fighting against them with technical and legal measures for many years, the situation has notimproved. It seems to be getting worse
and worse. We attribute this to lack of end-to-end security measures for emails in current internet infrastructure. Most past security
solutions provide either in-domain authentication, or domain-to-domain authentication. Available end-to-end solutions are based
on public key cryptography and have many limitations. In this paper, we propose a simple end-to-end solution for email security. It is
based on the idea of trust chain from sender to receiver, which spans multiple domains and organizations without the requirement of
a uniform platform. On the client-end, it is transparent to the user without requirement of any user operation. The solution provides
end-to-end authentication and integrity for its users, which is hard to achieve or use in existing works.

. INTRODUCTION

Nowadays, we cannot live or work without emails.
Pervasion of smart phones and mobile computing
devices, 4G highspeed data networks and Wi-Fi hotspots
make people rely more on emails. Many attacks, scams,
and malware threats are based on or spread through
emails nowadays. Spamming emails and phishing emails
are widely existing and cause serious problems,
especially in mobile communications era. Some emails
trick people into giving out their credentials. For
example, a few weeks ago, one of the authors received an
email seemingly from the president of the university,
with content saying, “Here is an important document all
staff has to look at. It's about school updates activities.
Everyone needs to read the important information
carefully.” Attached in the email is a pdf file. If you open
the pdf file, it says “This is a confidential document,
verify your identity first” and asks for user ID and
password before reading it. This is an example of
phishing email. Some emails with spoofed sender
addresses are used to issue false messages. As an
example, in October 2013, an email that looked like it
was from Fingerprint Cards, a Swedish biometrics
company, was sent to a news agency, saying that
Samsung offered to purchase the company. The news
spread and the stock exchange rate surged by 50%. It was

later discovered that email was fake [1]. Some other
emails pretending to be from trusted senders are used to
spread viruses, Trojan horses, and other malware.

These emails are mostly from anonymous or
impersonated/spoofed addresses. Simple Mail Transfer
Protocol (SMTP) specifies the process and requirements
of sending an email. The email recipient sees the email as
having come from the address in the “From:” header;
they may sometimes be able to find the “MAIL FROM:”
address; and if they reply to the email it will go to either
the address presented in the “From:” or “Reply-to:”
header, but none of these addresses are required to be
checked [2], [3]. Sending such emails is pretty easy. We
will see some examples in a later section.

In many mail servers, the default configuration is
open mail relay. An open mail relay is an SMTP server
configured in such a way that it allows anyone on the
internet to send an e-mail through it, not just a mail
destined to or originating from known users. The
rationale of this design is: At the beginning of internet
and email, only a few people had access to the internet,
and even fewer people had email addresses, so it was
common that many people were sharing an email
address. This design enabled people to send email from
any place they had internet access, and the unchecked
“FROM” address enabled them to claim who they were
or which organization they belonged to, and to receive

Manuscript received May 25, 2018; revised June 15, 2018; accepted June 16, 2018. Date of publication July 6, 2018.
*S. Zhao is Assistant Professor with Division of Management and Education, University of Pittsburgh at Bradford,300 Campus Dr.

Bradford PA, 16701, USA. (email: shushanz@pitt.edu)
DOI: 10.17010/ijcs/2018/v3/i4/131647

22 Indian Journal of Computer Science * July - August 2018

replies at that address. Obviously, things have changed
so much ever since then. Nowadays, each email sender
has her/his own address; sharing an email address or
sending an email from a different place is not a decent
requirement any more. On the contrary, still having this
enabled is a major concern now. Having realized this
fact, many internet service providers block mail sent
from open relay servers. This reduces the percentage of
mail senders that are open relays. However, spammers
and attackers have created distributed botnets of zombie
computers that contain malware with mail relaying
capability.Some technical solutions have been proposed
to fight against email spoofing and spamming, such as
DKIM, SPF, and DMARC which we are going to review
in section II. However, they just cover part of the entire
route of an email, and are not end-to-end. This means that
the authentication is not covered from the sender host to
the receiver host, for example, when sending an email
from universityA.com domain, if user A writes “FROM:
userA@universityB.com”, DKIM/SPF/DMARC can
detect domain name spoofing; but if the sender writes
“userB@universityA.com” where userB is an authentic
user of universityA.com, then these solutions cannot find
anything wrong with it.

End-to-end authentication is difficult to achieve. This
is because there is no security infrastructure from
sender's end to receiver's end. Theoretically, Public Key
Infrastructure (PKI), or personal certificates, can solve
this problem, for example, the ideas of PGP (Pretty Good
Privacy) and GPG (GNU Privacy Guard), but so far PKI
is only applied on domain level, and not on individual
user level. For the latter, too much burden would be
added to current internet infrastructure, as each user
needs to have a certificate. This incurs usability and key
management issues. The limitation of the PKI-based
solutions are elaborated in section I1.

To summarize, most current email systems provide
only domain-to-domain security. End users can choose
some plug-in components for end-to-end security only if
they understand concepts of public key cryptography
well. In view of potential attacks in status quo, we
propose a simple seamless solution to ensure end-to-end
email authentication and integrity by which the receiver
can verify if the sender is authentic, and the sender can
verify if the receiver is authentic, and if the email content
is forged or tampered en route. The solution is
transparent to end users, so there is no usability or key
management issue at all.

The rest of this paper is organized as follows: section
I briefly reviews related work this work is based on.

Section III shows the experiments I designed to test
security of currently popular email systems, and results.
Section IV presents the solution from overview to
details. Section V evaluates performance of the scheme,
discusses and analyzes security features and their
limitations. Section VII concludes the paper.

Il. RELATED WORK

To fight against emails sent from spoofed addresses, a
number of effective systems are now widely used to
enforce email authentication. These include DKIM, SPF,
and DMARC on the server side, and PGP or GPG on the
clientside.

A. Domain Keys Identified Mail (DKIM)

As the name suggests, DKIM identifies the domain of
the'email sender. The sender's email server signs the
email with its private key if it is really from its domain,
and sends the signature with the email to the receiver's
server to verify. The public key of sender's server is
published on Domain Name System (DNS) records of
the sender's domain. In this way, the receiver is able to
check whether an email that is claimed to come from a
specific domain was indeed signed and authorized by the
owner of that domain [4]. The purpose of a DKIM-
signature is not to assure message integrity. As is stated in
[5], “it does not even guarantee that a message author's
data, as per a signed From: field, has a real name or a
valid mailbox. The parts to be signed are chosen so as to
identify the message unequivocally. A valid signature
just states that the message did actually flow through a
box operated by the sender's domain”.

B. Sender Policy Framework (SPF)

While DKIM is only concerned about domain, SPF
cares a little about the sending host. It provides a
mechanism to allow receiving mail exchangers to check
that the sender of an incoming mail from a domain is an
authentic and authorized host from the sender's domain,
namely a host authorized by that domain's
administrators. The list of authorized sending hosts for a
domain is published in the DNS records for that domain,
in the form of a specially formatted TXT record. SPF
checks that the IP address of the sending server is
authorized by the owner of the domain that appears in the
SMTP “MAIL FROM” command [6]. This only ensures
the email sender is indeed in the sender's domain. After
this authentication, it is still possible for attackers to
replace sender address, or tamper the email content, and
the receiver has no means to detect that. This does not

Indian Journal of Computer Science * July - August 2018 23

prevent spoofing inside a domain, and does not prevent
User Ausing User B's name when sending an email out of
the domain.

C. Domain-based Message Authentication, Reporting,
and Conformance (DMARC)

DMARC itself does not specify requirements for
authentication or integrity, but provides authentication
reporting to senders to improve and monitor their
authentication infrastructures [7]. It just defines a policy
that allows a sender's domain to indicate that its emails
are protected by SPF and/or DKIM. Italso tells a receiver
what to do to a message if neither of those authentication
methods pass, put it into Spam folder or reject the
message. DMARC is a higher managing layer on top of
DKIM and SPF, and it does not address the limitation of
the two protocols mentioned earlier.

D. PKI-based Solutions

In the software market, we see some products
attempting to provide end-to-end security, such as
Thunderbird with Enigmail plugin, Mailvelope browser
plugin for Gmail/Yahoo/Outlook etc. They are all based
on the idea of PGP or GPG. The sender generates a pair of
public key and private key, sends the public key to the
receiver and keeps the private secret locally, then uses the
private key to sign and encrypt a message.
Correspondingly, the receiver uses the received or
previous stored public key to verify the signature or
decrypt the message. However, there are two major
issues in these software products:

1) Usability: According to a study conducted by Ruotti et
al., only one out of twenty participants were able to
successfully use the public and private keys properly
with Mailvelope [8]. For common people without
knowledge of public and private keys, it is hard for them
to complete sign/encrypt and verify/decrypt operations
in the email client interface.

2) Security: There are two aspects for security issue: For
one thing, the key management on the client side is a
tough task to handle. For another thing, the
public/private key pairs or certificates used in these
products are self-generated or self-signed, and the
identity of a user can be easily forged.

E. Sender-side Password Authentication:

Some email systems use a password to authenticate
the sender. For example, if you use the Gmail SMTP API
to send an email, you must provide the correct username
and password of the sender. However, this only prevents
a forged email to be sent from the Gmail server. If the

attacker him/herself has an email relay, this does not
prevent him/her from using a forged Gmail account as
sender, and whether this is successful depends on the
receiver side. We name this solution sender-side
Password Authentication, and it is far from an end-to-end
solution.

FE. Other Works in Literature

In literature, there are also a number of works related
to this topic. In [9], the authors realize that the SSL/TLS
system used to encrypt server-to-server email traffic can
also be used to enforce email authentication, and most of
existing techniques are server-oriented and transparent
to the user. They propose an SSL-based anti-spoofing
application that allows a client to send trusted emails and
authenticate received emails using the SSL protocol.
However, it uses a self-signed certificate to exchange a
secure authentication message alongside the email with a
view to prevent spoofing. Self-signed certificates can
only protect integrity, i.e. using the public key of the
sender and signature in the email, the receiver can verify
if the email is modified or not. There is no way to ensure
authenticity of the sender, i.e. the sender can generate a
self-signed certificate by himself/herself to claim to be
somebody else. In [10], the authors demonstrate an
example of email sender address spoofing by TELNET,
which is from spoofed address uso@uso.uso to an
authentic user at gmail.com. They propose that the
receiver server obtains a sender domain name by using
Auto Whois from [P address described in “Received” of
the header field; and then the sender domain name
obtained and domain name after @ in the mail address
written in “Received:” and “From:” are compared to
detect spoofing. Again, this is only domain level
authentication, and not individual user level
authentication. In our previous work [11], the authors see
the risk of potential email attacks and propose an end-to-
end solution against these attacks. The potential attacks
are just theoretical ones, and not tested and proven to be
viable; and the solution is not implemented. In this work,
we add experimental facts of viable attacks, explanation,
and analysis of our implementation.

l1l. EMAIL ATTACK EXPERIMENTS
AND RESULTS

In Section I, we suspect possibility of different
attacks available in the existence of
DKIM/SPF/DMARC mechanisms. In order to test and
prove our thoughts, we set up a testing environment and
sent emails with forged sender addresses to some

24 Indian Journal of Computer Science * July - August 2018

authentic email users. The receivers were institutional
email users on Google/Microsoft state-of-art email
server systems.

A. Experiments Overview

The cost and knowledge requirement to set up the
experiment environment is within the capability of a
college student. Briefly, we installed a Postfix SMTP
server on a Linux virtual machine, and configured it as an
open relay to send out forged emails. Next, we connected
to the SMTP server through Telnet, and created emails
using “MAIL FROM:”, “RCPT TO:”, and “DATA”
commands. The SMTP sever then forwarded it to the
destination.

I tested sending forged email with either forged
sender address or forged domain name or both to Google
Gmail accounts, and institutional email accounts on
Microsoft products, and noticed some attacks were
successful. In these attacks, some email servers scanned
and filtered content inside the email, so that emails with
certain content were classified as “spam” and put into the
Spam folder, for example, an email with a link or an
attachment was more likely to be filtered. This content-
filtering measure is irrelevant to our topic in this paper,
and we consider an attack as successful if there exists
content that can reach the inbox folder of the tested
account.

B. Successful Email Attacks with a Forged Sender
Username and Real Domain Name to Another Real
Domain

I sent an email with a forged sender username
(spoofed account) and our real domain name (pitt.edu)
to a Gmail account. The email was successfully received
in Inbox of the Gmail account [Fig. 1(a)]. Another email
with same username and domain name was also sent to
an institutional email account in another domain, and
was successfully received in receiver's Inbox that was on
Microsoft Office365 Outlook server [Fig. 1(b)].

C. Successful Email Attacks with a Forged Domain
Name to Another Real Domain

I sent an email with a spoofed domain name
(microsoft.com) from pitt.edu domain to an institutional
email account in another domain (other than pitt.edu).
The email was successfully received in Inbox of the
receiver's account. The receiver's side was employing
Microsoft Outlook Web App [Fig. 1(c)]. The email could
still be successfully received in Inbox if the sender

domain name was a forged (non-existing) one.

D. Successful Email Attacks Inside the Real Domain
with Forged Sender Address

We sent an email with a spoofed username (someone
else's) to an institutional email account in the same
domain (pitt.edu). The email was successfully received
in Inbox of the receiver's account. The receiver's side was
employing Microsoft Office365 Outlook [Fig 1(d)]. The
email could still be successfully received in inbox if the
sender username was a forged (non-existing) one.

E. Experiment Results

In the above experiments, we forged some emails and
successfully sent them to the receiver's inbox. With big
chance, especially for institutional email users and when
the sender's name seemed familiar, the receiver would
open and read the email without suspicion or hesitation.
In this case, with a forged sender, the attacker can
distribute false information, fool the target to open a link
and install some malware or adware etc., and launch
further attacks. The results show that there are security
flaws or vulnerabilities in currently commonly used
email systems.

IV. A NON-PKI-BASED END-TO-END
SOLUTION

The basic idea of our proposed solution is chain of
trust, i.e., sender's email server verifies that the sender is
authentic, and signs it; the receiver's email server verifies
that the sender's email server is authentic and trustable,
and its signature is authentic; the receiver's email server
authenticates the receiver, and the receiver trusts her/his
own email server. On the basis of these conditions, the
receiver ensures the sender is authentic, and the sender
ensures the receiver is authentic. The logic is sound and
reasonable.

The underlying cryptography is a hybrid of
symmetric and asymmetric cryptographic algorithms,
similar to a cluster-based structure. Inside a cluster, a host
is authenticated by its cluster head using symmetric
cryptography; between clusters, hosts are authenticated
via cluster-heads, using asymmetric cryptography. In
this way, while the communication overhead between
clusters (actually domains in terms of email
communication,) is minimized, the in-cluster
authentication is somehow passed and transferred to
other clusters.

Indian Journal of Computer Science * July - August 2018 25

geeglecom #irbes/1 151 @ Q Search e + a0

Click herg to enable desktop notifications for Gmail. Learmn mere Hide

- o]] [] = % - Hore - 1of48803 ¢ 3 -
| (no subject) weox x -
)

5 spooled_accouni@pit.edu Ap T -,

Subject: Mewting tomoerow

We are hawng a meebng tomorow 340 at Hanger Building G

Fig. 1. Forged Emails Successfully Received in Inbox. (a) An Email With a Forged Sender Address and
Real Domain Name Received by a Gmail Account

Fig. 1. Forged Emails Successfully Received in Inbox.
(b) An Email With Forged Sender Address and Real Domain Name Received by an Institutional Account in
Another Domain (Employing Microsoft Office365 Outlook)

Fig. 1. Forged Emails Successfully Received in Inbox. (c) An Email With Forged Sender Address
and Forged Domain Name Received by an Institutional Account in Another Domain
(Employing Microsoft Outlook Web App)

26 Indian Journal of Computer Science * July - August 2018

Fig. 1. Forged Emails Successfully Received in Inbox.
(d) An Email with Spoofed Sender Address Received by an Institutional Account in the Same Domain

5e"ers 4p, °a:m.gf's"fe”‘*f
() 7™ v b
AN | Miva
Uiua 1 -

%o}vk\\ MQ\(

N -

X?’ Mﬁ
UL 2y,

&Bezmﬂt_ﬂ'}v

original design by Palrik Filtsirdm for SPF

Fig. 2. A Schematic Representation of the Most
Common Ways that an Email Message can get
Transferred from its Author to its Recipient [12].

Fig. 2 shows that the most common way that an email
message can get transferred from its author to its
recipient. In this figure, a message submission agent
(MSA) or mail submission agent is a computer program
or software agent that receives electronic mail messages
from a mail user agent (MUA) and cooperates with a mail
transfer agent (MTA) for delivery of the mail. An MUA,
mostly known as an email client, is a computer program
in the category of groupware environments used to
access and manage a user's email. A mail delivery agent
or message delivery agent (MDA) is a computer software
component that is responsible for the delivery of email
messages to a local recipient's mailbox [12]. Our end-to-

end solution is from MUA to MDA.

The process of sending an email is discussed next. An
email header and body with signature components are
demonstrated in Fig. 3:

1) User logs into an MUA, for example, from a webmail
page or a mobile terminal application. A password p for
sending email is required for this step. This password can
be set same as the one user receives emails by default.

2) User inputs all header fields and body content of the
email. The following steps are transparent to the user.

3) MUA application calculates hash value of the user's
password. We can use the same mechanism used in Linux
systems:

a) MUA chooses a salt value s that is a random data
generated to combine with the original password, in
order to increase the strength of the hash.

b) MUA chooses a hash algorithm H of index i from a
pre-defined list, e.g., 1 for MDS5, 2 for Blowfish, 3 for
SHA-256, etc.

¢) MUA calculates ahash value s =H(p + s).

4) MSA application appends <s/ = is$h/> to the end of
“data” component after message body, for
e x a m p 1 e , < s I =
818Etg2ExUZ8Ds5e24NuQTP2tQ8vLn5 Mw/>means:
using MD5 hash algorithm, E7g2ExUZ as salt, hash value
of H(p+s) is Ds5e24NuQTP2tQ8vLn5Mw (p's value is
“emailpswd” in this example).

5) MSA uses 4 as key, and uses a predefined Message
Authentication Code (MAC) algorithm, such as HMAC,
to calculate a message tag s2 of the message header mh
and message body mb and the above s1: 52 = HMAC,(mh
+mb+sl).

Indian Journal of Computer Science July - August 2018 27

6) MSA appends s2 to the end of “data” component, and
sendsitto MTA.

7) MTA first verifies authenticity of the claimed sender in
email header:

a) MTA derives i, s, and ~# from s/, and a hash
algorithm H of index i from the same pre-defined list
embedded in the code.

b) MTA retrieves sending password p of the sender.

¢) MTA calculates a hash value #'=H(p+s),and

compares it with the one /2 derived from s/ in the

message: #'=7h. If it is same, then continue; otherwise,
reject the message.
8) If receiver is in the same domain as the sender, the
message is forwarded as shown in the flow in Fig. 2.
9) If receiver is in different domain than the sender, MTA
does the following:

(a) MTA calculates signature of s2 by encrypting it with
SK_Sender, the private key of sender's Administrative
Management Domain (ADMD) email server: s3 =

ESK Sender(sz)'

(b) MTA appends s3 to the end of message body.

(c) MTA appends s4 — public key of sender's ADMD
email server to the end of message body.
Correspondingly, the process of receiving an email is as
follows:

1) MDA checks if the email is from the same domain. Ifit
is, go to Step 4.

2) MDA reads signature s4 at end of “data” component,
gets sender's ADMD public key PK Sender, and checks
with well-known Certificate Authority (CA) to
determine if it is authentic for sender's ADMD (more is

discussed in Section VI). If not, reject the email and stop.
3) MDA reads signature s2, s3 at end of “data”
component, and verifies if s3 is a valid signature of 52
signed by sender's ADMD specified in 54, by decrypting
s2with PK_Sender, and comparing the result with s3:
§3=?D g sopar(2). If n0t, reject the email and stop.

4) MDA reads the message header mh, message body mb,
and signature s /.

5) MDA uses /4 in s/ as key, and uses a predefined MAC
algorithm, such as HMAC, to calculate a message tag s2’
of the message header mh and message body mb and the
aboves/:

s2'=HMAC,(mh+mb+sl);

and compares it with s2 from the email: ifs2'=?s2. Ifnot
equal, reject the email.

Notice that if the email is sent in the same domain, the
MDA does not need to check authenticity of sender's
ADMD server, but just checks if the sender uses correct
username and password as claimed. Otherwise, MDA
needs to verify if the email is really from the claimed
domain. This is done by verifying the signature of the
sender's ADMD server using its public key. The public
key needs to be issued from a publicly accepted and
trusted source, and can be verified from the source.

To summarize, the solution is an interlocked chain: it
requires that the email sender provide correct username
and password to generate s/, use s/ as authenticator of
the user who is sending the email, and generate s2; we use
s2 to protect integrity of the email and the authenticator,
and generates s3; we use s3 to protect integrity of s2;
finally, we use s4 to verify authenticity and integrity of

From: bob@example.com
TJo-alice@axample . com

+Cc: thebozz @example.com
Date: Tue, 15 January 2018 16:02:43 -05:00
subjoct: Tost message

Hello Alice,

Your friend,
L= Bob

<53:

<sd:

WDzO+oagUlafSeeTnTigXlAbCCEWwWIDAOAB >

This is a test message with 5 header and 4 lines in the message bﬂdv_ Message body

<s1-S1SEtgZ EXUZSDsSe24NuT P 2tq3an5wa?,F
<52: 9c60f1fdcS9Ta23c78cca473c41b68a762 1ccacccb64e1f4202627d36dbfb2 2780 >

bragFyCLALUgXOYOIUEMAeFmHVIZUKIhIrKG463yeEYCDXfIICakTOcBK+kw T mSarPCdHseVy M2 3cOHLENRMMMGTEIL2
mwXrkO4sNUhOKr70sbYiUIKIgSSYSiBGbWXn/veOGEQGb4j3K7I1mSafglR9GSSYre/bwZr3zXBafF88=

MIGFMADGCSqGSIb3DAEBAQUAAAGNADCRBIOKBgQCPNyFcO/V+dFTQWOGe0k0dOxg8rQHgOsTTOM 7Y0TuQxBIBBtolM
kIaWICMuelLAHSnyrQJZCIuMFsmOOSxPggpQrm gV KHhgm9cmnaZkwA)8UPQ+dgjGZSLvCOioyCelOTT7Bj6efSf8OQrsiQ

-_ Message header

_yeﬁ,ﬂubﬁ e 'with s2

Sender authenticator

h Verifiable with s3

Verifiable with s4

Verifiable with PKC

Fig. 3. An Email Header and Body With MAC tag and Signatures

28 Indian Journal of Computer Science * July - August 2018

s3, and s4 itself can be verified with a public key
certificate from a publicly accepted and trusted source.

V. SECURITY ANALYSIS AND
PERFORMANCE EVALUATION

From the description of the solution, we can see that
the security of the solution is based on “chain of trust”
that is similar to the widely used “certificate chain”, but
the last segment employs existing technology and
infrastructure. The verification of the sender is passed all
the way down to the receiver. Since all the connections
are interlocked with each other, the receiver and sender
can establish end-to-end trust.

The security level of the solution depends highly on
security of passwords and cryptographic algorithms
chosen. For a secure hash algorithm or
encryption/signature algorithm, the best attack to break
is brute force. For this solution, if an attacker wants to
forge an email with impersonated address, the effort in
number of tries is as follows:
¢ To generate a correct s1: Assume the password uses
letters in the ASCII table, excluding special characters,
each letter in the password has 94 possibilities. If the
password is 8-letter long, altogether the attacker needs
94°, or approximately 2* tries to generate the correct s1.
If the password is 12-letter long, altogether the attacker
needs 94°, or approximately 2%, tries to generate the
corrects/.

% To generate a correct s2: 52 is generated based on
correct s/. The attacker needs to either break s/, or break
the secure hash function used for s2. If SHA-256is used
in this step, the number of tries to break it is 2**.

s To generate a pair of correct s3 and s4.:s3, the
signature on 52 using private key of the sender's ADMD
email server is used. The security of public/private key
pair is determined by difficulty of integer factorization
problem. The most efficient algorithm to solve it in some
certain type of forms is General Number Field Sieve
(GNFS) algorithm that takes O(Exp’ \n) for n-bit number
[6]. nis determined by the modulus p preset, such as 1024
or2048.

The signature generation and verification will lower
down performance of the sender's and receiver's servers.
To evaluate the time consumption overhead brought by
the signatures, I implemented the signature generation
and verification algorithms with Java JDK 9.0 on
Windows Server 2016 64-bit platform and Intel 17-6700
340 GHZ CPU/16G RAM desktop computer, and
measured average run time for each of them. Core hash

function used in the implementation is SHA-256, and
public/private key algorithms used are RSA 1024-bit.
The time spent on sl generation or verification is
approximately 50ms. The time spent on s2 generation or
verification is approximately 60ms. The time spent on s3
generation or verification is approximately 50ms. The
overall time overhead of signature generation and
verification on both sender and receiver sides added on
an email is less than 1s. Database access/retrieval time is
determined case by case and is not included.

We see that the time overhead added to generate and
verify the signatures is acceptable generally. On the other
hand, we don't think the time overhead is a big concern,
as email is not a time-sensitive communication measure,
and a little percentage increase of process time does not
matter much for normal users, but matters significantly
for senders of batch spamming emails and phishing
emails. So, this is a way to deter email attackers to some
extent.

VI. DISCUSSION

I want to bring the following features and limitations
of'this solutions to the notice of readers:

A. End-to end Authentication and Integrity

The identity of the sender is verified and signed by
sender's ADMD email server. The MAC tag and
signature cannot be tampered or forged without
detection. If User A is sending an email with name User
B, MTA can detect the mismatch in sending password
and rejects the email. If the sender's domain name is
forged by the sender, MTA can also detect and reject it. If
an email is intercepted and s/ and s2 are forged en route
(for example, man-in-the-middle attack), it can be
detected by receiver using sender's ADMD email server's
signature, and public key certificate.

B. End-to-end Confidentiality

This solution is designed to ensure authenticity and
integrity, by using MAC and signature. If end-to-end
confidentiality is required, the sender needs to share a
secret key with the receiver, or the sender needs to know
the public key of the receiver, which needs to be
distributed before creating the email and using it encrypt
the email body. The email content is transparent to the
solution. This means that an encrypted email body is
treated the same way as a plaintext email body.

C. Security of Authenticator
If somebody gets your account password, s’he can
send emails in your name — this is the normal case

Indian Journal of Computer Science * July - August 2018 29

understood by everybody. Password is not secure enough
to ensure exclusive authentication. More reliable
methods include hardware authentication token,
biometric authentication such as fingerprint, iris, face
recognition, voice recognition etc. that can prevent most
of password-based impersonation. The proposed
solution is compatible with these choices, as long as the
sender's ADMD email server supports them.

D. Public Key Certificate Access

In the above description, we have the public key of
the sender's ADMD email server attached in the email
data. This is not efficient and adds traffic overhead,
especially for frequent contacts. A better way is to adopt
DKIM approach: have the certificates stored with DNS
records of the sender's domain, and retrieve them when
needed; a local certificate deposit is also suggested, as
most web browsers do. This means s4 is optional in the
email.

E. s1 Through s4 Placement

s1 through s4 can be added in extended headers of the
email, but there is a concern that these extended headers
might not be forwarded by the intermediate nodes
between MTA and MDA. Technical details of this issue
need to be considered and tested as future work.

VIl. CONCLUSION

Spam emails and phishing emails are widely existing
issues, and most of them are spoofed emails. We consider
lack of end-to-end infrastructure as the main challenge
when fighting against these issues. In the solution
presented in this paper, we connect end users to existing
security infrastructure, by having the sender's server
verify and endorse its users, and passing this verification
and endorsement to the receiver. The message tag and
signature appended to the email provide authentication
and integrity protection to the email. The specific
contribution of this work is that it provides end-to-end
security without end-user's intervention which is not
seen in existing works. Since, there is no operation
explicitly conducted by end users, it is much easier to
deploy and use. The solution can be implemented on top
of existing protocols as an optional component, without
replacing email servers and routers in the internet
infrastructure. All work is to be done on sender's and
receiver's email client application and sever application.

I believe this is a novel, feasible, and promising
solution in the current situation and in the near future.

REFERENCES

[1]S. Mundy, “Fraudsters' fingerprints on fake Samsung
deal,” Financial Times, October 11, 2013. [Online].
Available: http://www.ft.com/content/0b972892-3259-
11e3-b3a7-00144feab7de

[2] J. B. Postel, “Simple Mail Transfer Protocol,”
August, 1982, IETF RFC 821.

[3]J. Klensin, “Simple Mail Transfer Protocol,” October,
2008, IETF RFC 5321.

[4] T. Hansen, D. Crocker, and P. Hallam-Baker,
“Domain Keys Identified Mail (DKIM) Service
Overview,” July, 2009, IETF RFC 5585.

[5] D. Crocker, “DKIM Frequently Asked Questions”,
Version: 16-Oct-2007 10:32. [Online]. Available:
http://www.dkim.org/info/dkim-faq.html
[6] S. Kitterman, “Sender Policy Framework (SPF) for
authorizing use of domains in email, Version 1,” April
2014,IETF RFC 7208.

[7] M. Kucherawy and E. Zwicky, ‘“Domain-based
Message Authentication, Reporting, and Conformance
(DMARC),”March 2015, IETF RFC7489.

[8] S. Ruoti, J. Andersen, D. Zappala, and K. Seamons,
“Why Johnny still, still can't encrypt: Evaluating the
usability of a modern PGP client,” CoRR, vol.
abs/1510.08555, 2015. [Online]. Available:
http://arxiv.org/abs/1510.08555
[9] D. Moolooand, and T. Fowdur, “An SSL-based
client-oriented anti-spoofing email application,” n
Africon Conf. Proc., September, 2013. doi:
10.1109/AFRCON.2013.6757757
[10] A. Zadgaonkar, V. C. Pandey, and P. S. Pradhan,
“Authentication against e-mail address spoofing using
application,” Int. J. of Sci. and Modern Eng.,vol. 1,no. 6,
pp- 13—-17,May 2013.

[11] S. Zhao and S. Liu, “An add-on end-to-end secure
email solution in mobile communications,” in Proc. of
the 10" EAI in. Conf’ on Mobile Multimedia Commun.,
ser. MOBIMEDIA'l7. ICST, Brussels, Belgium,
Belgium: ICST (Inst. for Comput. Sciences, Social-
Informatics and Telecommun. Eng., 2017, pp. 57-61.
[Online]. Available: https://doi.org/10.4108/eai.13-7-
2017.2270117
[12] P. Faltstrom, “Most common ways that an email
message can get transferred from its author to its
recipient,” (n.d.). [Online]. Available:
http://en.wikipedia.org/wiki/Email authentication
[13] T. Kleinjung, “On polynomial selection for the
general number field sieve,” Mathematics of
Computation,vol. 75,1n0. 256, pp. 2037-2047,2006.

30 Indian Journal of Computer Science * July - August 2018

About the Author

Shushan Zhao received his B.Sc degree in Computer Science from Shandong University, China,
and M.Sc degree in Telecommunication Software from Helsinki University of Technology, Finland,
in 1992 and 2005 respectively. He completed his Ph.D. degree from the School of Computer Science
at the University of Windsor, Canada in 2012. Before joining the University of Pittsburgh in 2016,
Dr. Zhao worked as lecturer at Bishop's University and Vanier College in Canada. He also has rich

experience in telecommunication and software industry, having worked as software developer at
VM Ware, Mitel, Ericsson, and Nuance, in Finland, and Canada.

Indian Journal of Computer Science * July - August 2018 31

