An Overview About the Security Architecture of the Mobile
Operating System iOS

* Jithu Philip
** Merin Raju

Abstract

The use of mobile operating systems is rapidly increasing as the number of smartphone users is increasing day by day. iOS is
one of the most popular and widely used mobile operating systems in the world. This document describes an overview about the
security features of iOS in its low-level system framework and in its user-level applications framework. The document discusses
processes like how security is implemented in the core components of the system, how data protection and encryption is achieved,
and how applications are secured by sandboxing.

Keywords: Apple, application security, data security, encryption, iOS, operating systems, system security

. INTRODUCTION Il. GENERAL OVERVIEW

i0S is a mobile operating system created and The interface of i0S is designed in a user friendly
developed by Apple Inc., specifically for its mobile manner, based upon direct manipulation using multi-
hardware. The initial version of iOS was released in 2007 touch gestures. A demonstration of how the user interface
for the iPhone. Apple later expanded its support to other ofi0S looks like is given in Fig. 1.
Apple's own portable hardware devices like iPad and
iPod Touch.

Fig. 1. i0S 12 Running on an iPhone SE

Manuscript received November 2, 2018; revised November 25,2018; accepted December 2,2018. Date of publication January 6,2019.

* J. Philip is an independent security researcher. (email: jithuphiliph@gmail.com)

** M. Raju is Lecturer (Computer Science) with Department of Commerce, Bishop Kurialacherry College for Women, Amalagiri, Kottayam,
Kerala, India-686561. (email: merin.rajul 2s@gmail.com)

DOI:10.17010/ijcs/2019/v4/i1/142412

Indian Journal of Computer Science * January - February 2019 13

A. Hardware

The hardware that iOS runs is of the Advanced RISC
Machine (ARM) Architecture [13], [14]. 10OS versions
released before i0S 7 can only support devices with 32-
bit ARM processors (ARMv6 and ARMv7-A
architectures). From iOS 11 onwards Apple drops
support for 32-bit ARM processors and 32-bit
applications, thereby making iOS a 64-bit only
Operating System.

B. Kernel

The 10S uses the same UNIX based XNU core [10] of
Darwin. The initial version of 108, that is, 10S 1.0 used
the Darwin 9.0.0d1. The current version of iOS that is
10S 12 is based on Darwin 18.

C. Software Updates

Devices running iOS can be updated to latest versions
through OTA update or through iTunes update service.
108 specifically uses a process called System Software
Authorization to prevent devices from being
downgraded to previous iOS versions that lack the latest
security updates and are vulnerable to attacks. The boot
process in an 10S device ensures that only the code
signed by Apple can be installed on the device [1].

I1l. DESIGN OF THE LOW-LEVEL
SYSTEM ARCHITECTURE

The design of iOS is done in such a way that the
integration between hardware and software is secure
across all the core components. This goal is achieved
through various levels of integrity check done within the
encrypted hardware and the signed software, developed
by Apple. The Security Architecture diagram of i0S [2],
[3]is shownin Fig. 2.

A. The Boot Process (Secure boot chain)

The boot process contains components that are
cryptographically signed by Apple, which verifies the
integrity of each component before proceeding to the
next, thereby accomplishing a secure boot chain.

When an i0S device is turned on, its application
processor executes code from the read only memory
called the BOOT ROM. The executable code contained
in BOOT ROM is written during the chip fabrication
stage and hence, it can be implicitly trusted. The BOOT
ROM contains the Apple Root CA public key which

verifies whether the bootloader (iBoot) is signed by
Apple before proceeding to execute it.

Data Protection
Class

Software App Sandbox

User Partition (Encrypted)

OS Partition

File System

I

Kernel

Hardware

& Crypto engine

Firmware

Device Key
Group Key
Apple Root Certificate

Secure
Element

Secure
Enclave

Fig. 2. Security Architecture Diagram of iOS

On older devices with A9 chip or earlier A-series
processors, an additional bootloader called the Low-
Level Bootloader (LLB) is loaded before iBOOT. Upon
the successful execution of the iBOOT, the system
kernel itself'is verified and executed by the iBOOT.

A failure in BOOT ROM to load LLB (on older
devices) or iBOOT (on newer devices) causes the system

14 Indian Journal of Computer Science * January - February 2019

to enter DFU (Device Firmware Update) mode and a
failure in LLB or iBOOT to verify its next stage causes
the system to enter recovery mode.

B. Secure Enclave

Secure Enclave is a coprocessor that is used in i0S
device's system on chip (SOC). It uses encrypted
memory and does all cryptographic operations for data
protection [9]. During hardware fabrication, each
device's secure enclave is assigned a unique 1D, which
cannot be changed. This unique ID is used in the process
of temporary key generation for memory encryption. The
secure enclave also contains a hardware random number
generator as a part of the coprocessor.

Secure Enclave contains a dedicated Secure Enclave
Boot ROM like the application processor Boot ROM,
which creates an ephemeral memory protection key at
system startup. This key in combination with the device's
UID is used for the encryption of Secure Enclave's
portion of the device's memory.

Data that is written to the file system by Secure
Enclave is further encrypted with a key bound with the
UID and an anti-replay counter (which is stored in a
dedicated nonvolatile Integrated Circuit (IC).

The processing of fingerprint and face data from
Touch ID and Face ID sensors for user authentication is
also done by the Secure Enclave.

C. Hardware Encryption

For ensuring higher level of security, encryption
stands as a mandatory requirement for every stage in an
10S operation. A major use of encryption in i0S is in the
memory of the Secure Enclave. iOS devices use AES-
256 cryptographic encryption that secures the DMA path
between flash storage and system main memory [1][9].

10S with its hardware encryption makes sure that the
security of the device is not compromised in any level of
its operation. If a user erases the contents and settings of
ani0S device, it then deletes all the keys to the encrypted
storage, thereby making the data on the device
cryptographically inaccessible. iOS uses crypto-
shredding to achieve this.

IV. DATA PROTECTION

10S devices protect data stored in its flash storage by
constructing and managing a hierarchy of keys in
combination with the employed hardware encryption.

This technique is done on a per-file basis, where each

file is assigned to a class, and the file can be accessed
only based on whether the key to that class is unlocked or
not.

Newer version of 108 file system, APFS (Apple File
System), sub-divides the key to a per-extent basis
(portions of a file can hold multiple keys) [12]. The Data
Protection and Encryption process of iOS [2], [3] is
shownin Fig.3.

A. How the Data Protection Architecture Works?

When a new file is created on the data partition, the
protection mechanism creates a 256-bit key (per-file
key), which is then forwarded to the hardware AES
engine for the encryption of the created file on the
system's flash storage.

.| File System
Hardware Key
Key v
Class File Metadata File
» Ke -
Passcode y File Key Contents
Key

Fig. 3. Data Protection and Encryption Process of iOS

The per-file or per-extent key is wrapped with one of
several class keys and stored in the file's metadata for
further usability, depending on how the file is accessed.

While opening a file from the encrypted storage, the
file's metadata is decrypted with the file system key,
thereby revealing the wrapped per-file key and the class
key. The per-file (or per-extent) key is unwrapped with
the class key and given to the hardware AES engine for
the decryption of the exact file contents from the storage.
All wrapped file key handling operations are done by the
Secure Enclave and the keys are never directly exposed
to the application processor.

The metadata of all files is encrypted with a random
key (which itselfis created when iOS is first installed or a
factory reset operation is done by the user). For devices
having APFS (Apple File System), the wrapping of file
system metadata key is done by the Secure Enclave UID
(Unique ID which was stored when the chip fabrication
was done) for long-term storage.

B. Advances of Data Storage in APFS With Per-extent
Keys

The introduction of Apple File System (APFS) [12]

Indian Journal of Computer Science * January - February 2019 15

provides advanced data storage capabilities by cloning of
files, which uses copy-on-write technology, and reduces
the actual cost of copy operation [7], [8]. A clone creates
a copy of a file or directory with no additional space on
the disk. In this technique both the file and its clone share
the same set of unmodified blocks. Data blocks which are
modified only are written elsewhere in separate blocks.

File 1

-

Apple

File System

File oDY

Fig. 4. Storage representation of a how file
and its clone share blocks in Apple File System

The demonstration of a file and its clone, each of
which shares two common blocks and one separate block
stored in an Apple File System is given in Fig. 4. For this
representation to work, if a file is cloned, each half of the
clone gets a new key. So modifications to the file or its
clone correspond to a new key. Over time, the actual file
and its clone's modifications correspond to different
extents or fragments, each of which is represented by a
different key. Anyhow, all extends of a file will be
managed by the same class key.

V. APPLICATION SECURITY IN APPLE
FILE SYSTEM (APFS)

For security purposes, the file system of i0S is treated
in such a way that users do not have direct access to the
file system. This design strategy makes an iOS
application only access the directories which reside
inside its own sandbox directory. For that to be achieved,
the installer creates different container directories inside
an applications’ sandbox directory during the installation
ofthe app. The container directories that were created are
meant for different purposes. The bundle container
directory holds the app's bundle, and the data container
directory holds the data for both, the app and the user.
The data container directory can create further sub
directories within itself so that data can be organized. A
representation of an iOS application operating within its

own sandbox directory [8] is shown in Fig. 5.

In general, an application installed in iOS is restricted
from accessing or creating files outside its container
directory. An exception to this kind of access restriction
can be achieved for doing some specific tasks with the
help of public system interfaces (for example, an
application is allowed access to the users' contacts).
More details regarding the security effect of jail-
breaking an i0S device can be found in [5] for study.

VI. NETWORK SECURITY

i0S supports Transport Layer Security [9] (TLS v1.0,

e \

Bundle Container

Apgl.app

Data Container

[[

Appl

Cl Document

Cl Library
Temp
U J

iCloud Container

\& 0/

Fig. 5. An iOS application operating within
its own sandbox directory

TLS v1.1, TLS v1.2), and DTLS. It supports both AES-
128 and AES-256, and prefers cipher suites with perfect
forward secrecy. TLS with both low-level and high-level
APIs are supported for developers to make use of it in
their apps. As web security is a fact that mobile operating
systems needs to accomplish through security patches
everyday, experiments related to that are relevant for
researchers and can be found in different documents for
study [4-6].

16 Indian Journal of Computer Science « January - February 2019

VIl. PROTECTION OF RESOURCES
AND SYSTEM PROCESSES AT
RUNTIME

108 protects the core components of the system by
limiting access to its system files and resources. The
entire operating system partition is mounted as read-only
for user operations. The majority of tasks in iOS are
performed in a non-privileged user mode. Services that
are unnecessary are not included in the system, for
example, remote login services. Escalation of privileges
done by applications through the use of APIs that modify
other applications or the operating system itself is
restricted. For privileged operations to be done, i10S
makes use of signed entitlements. Entitlements are
digitally signed entities that cannot be changed and are
used by system apps and daemons to perform specific
privileged operations.

A. Address Space Layout Randomization (ASLR)

i0S makes use of Address Space Layout
Randomization (ASLR) [2], [11], a low-level technique
that prevents against exploitation of memory corruption
bugs. ASLR ensures that all memory regions are
randomized on execution. Data is placed in randomly
selected locations in memory that reduces ways to create
exploits to corrupt the system.

B. Execute Never (XN)

i0S uses ARM's Execute Never (XN) feature [2],
[11], which marks memory pages as non-executable.
This makes apps to only use the portions of the memory
that are marked as both writable and executable.

VIIl. USER AUTHENTICATION
MEASURES

Touch ID, Face ID, and passcodes are the measures
that a user can enable in order to secure an iOS device. To
use biometric access measures like Touch ID or Face ID,
the device needs to be set so that a passcode is required to
unlock it. Data protection is automatically enabled when
a passcode is set. The processing of fingerprint and face
data from Touch ID and Face ID sensors for user
authentication is done by the dedicated coprocessor,
Secure Enclave.

IX. CONCLUSION

As described in this document, 108 is a secure mobile
operating system which ensures security as a core feature
in its workflow. It ensures a secure signing procedure so
that the boot code cannot be tampered with malicious
code. The data stored in an iOS device is encrypted with a
256 bit AES cryptographic engine. The coprocessor
Secure Enclave takes care of the biometric authentication
securely, and it also does the temporary key generation
operation for memory encryption, with its Unique ID.
Applications running in iOS are secured by sandboxing
each application's directories from others. Protection of
resources and system process are made at runtime by
techniques like ASLR and XN. With all these measures
made available, the design strategy of iOS makes it one of
the most secure mobile Operating Systems in the world.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous
reviewers for their valuable and insightful comments on
the details of this document.

REFERENCES

[1] 10OS Security Overview, 2018. [Online]. Available:
https://www.apple.com/business/resources/docs/iOS S
ecurity Overview.pdf

[2]10S Security Guide, 2018. [Online]. Available:

https://www.apple.com/business/site/docs/iOS_Security
_Guide.pdf

[3] B. Guo, "iOS Security," 2014. [Online]. Available:
https://www.cse.wustl.edu/~jain/cse571-
14/ftp/ios_security/index.html

[4] F. Al-Qershi, M. Al-Qurishi, S. M. M. Rahman and A.
Al—=-Amri, "Android vs. i0S: The security battle," In
2014 World Congr. on Comp. Appl. and Inform. Syst.
(WCCAIS), pp. 178. 1IEEE, 17-19 Jan, 2014. doi:
10.1109/WCCAIS.2014.6916629

[5] T. Wang, K. Lu, L. Lu, S. Chung and W. Lee. "Jekyll
on i0S: When benign apps become evil," in 22nd Usenix
Security Symp., August 14-16, 2013, pp. 559—572.
[Online]. Available:
https://www.usenix.org/conference/usenixsecurity13/te
chnical-sessions/presentation/wang_tielei

[6] R. Wang, L. Xing, X. F. Wang and S. Chen.
"Unauthorized origin crossing on mobile platforms:
Threats and mitigation," In Proc. of the 2013 ACM

Indian Journal of Computer Science * January - February 2019 17

SIGSAC Conf. on Comp. & Commun. Security, pp.
635—646. ACM, 2013. [Online]. Available:
https://www.informatics.indiana.edu/xw7/papers/wang
2013unauthorized.pdf

[7] About Apple File System. [Online]. Available:
https://developer.apple.com/documentation/foundation/
file system/about apple file system

[8] Apple File System Programming Guide. [Online].
A v a i 1 a b 1 e :
https://developer.apple.com/library/archive/documentat
ion/FileManagement/Conceptual/FileSystemProgramm
ingGuide/FileSystemOverview/FileSystemOverview.ht
ml

[9] J. R. Vacca, Network and System Security, Syngress,
2010.

[10] M. J. Bach, The Design of the Unix Operating
System, Pearson Edu. Inc., 1986.

[I1] 1i0OS. [Online]. Available:
https://en.wikipedia.org/wiki/IOS

[12] Apple File System. [Online]. Available:
https://en.wikipedia.org/wiki/Apple File System
[13] ARM Architecture. [Online]. Available:
https://en.wikipedia.org/wiki/ARM architecture

[T4] RISC. [Online]. Available:
https://en.wikipedia.org/wiki/Reduced_instruction_set
computer

About the Authors

Jithu Philip received M. Sc. degree in Computer Science from School of Computer Sciences,
Mahatma Gandhi University, Kottayam, Kerala in 2014. He is currently working as Multimedia
Specialist for Philco Media, Kottayam, Kerala. He is also focused on conducting simulations as an
independent security researcher and has research papers related to Operating Systems, Computer
Security and Image Processing with specific focus on image forensics published in various journals.

Merin Raju received M.Sc. degree in Computer Science from School of Computer Sciences,
Mahatma Gandhi University, Kottayam, Kerala in 2014. She is working as Lecturer (Computer
Science), Department of Commerce, Bishop Kurialacherry College for Women, Amalagiri,
Kottayam, Kerala. Her research interests are in the areas of Computer Security and Image

Processing.

18 Indian Journal of Computer Science « January - February 2019

