
Abstract

Android and iOS are the most popular and commonly used mobile operating systems in the world. The increase in the usage
share of these along with the extensive use of internet in smartphones and tablets lead to security threats being spread more
frequently than expected for both. This document describes one of the security mechanisms used from earlier days of operating
systems called Sandbox or Application Sandbox. The document also specifies details regarding how Application Sandbox is
implemented in Android and iOS along with the common causes for malware attacks on both and an analysis about the common
vulnerabilities and exposures reported on both the platforms. The major issue that the document focuses on is to make the users
aware of the need to make use of protection mechanisms like Sandbox effectively to reduce the number of malware attacks.

Keywords: Application Sandbox, Android, iOS, Malwares, Operating Systems, Sandbox, System Security.

A Formal Overview of Application Sandbox in Android and

iOS With the Need to Secure Sandbox Against Increasing

Number of Malware Attacks

* Jithu Philip
** Merin Raju

Manuscript received March 26, 2019; revised April 28, 2019; accepted May 5, 2019. Date of publication June 6, 2019.
* J. Philip is Multimedia Specialist with Philco Media, Kerala.
**M. Raju is Lecturer with Department of Commerce, Bishop Kurialacherry College for Women, Kottayam, Kerala, India- . 686 561
(email:)merin.raju12s@gmail.com
DOI: 10.17010/ijcs/2019/v4/i3/146164

 I. INTRODUCTION

A. What is Sandbox?

Sandbox (commonly called Application Sandbox) is
a computer security mechanism which is used
specifically for securing running programs from creating
system failures and spreading software vulnerabilities,
thereby reducing the harm caused by attackers.

B. Uses and needs of a Sandbox

The major use of a sandbox is for security
researchers and normal users for executing untested or
untrusted programs or codes from third parties that are
unverified. A program which is running in sandboxed
mode is only allowed a controlled set of resources,
thereby making sure that it does not affect the host
machine or the core parts of the operating system.

C. Existing implementations of Sandbox in Operating

Systems

1) Jail : It is a sandbox implementation applied with

prohibiting access to network resources and filesystem
namespace (a kind of approach used in iOS).
2) Secure Computing Mode (seccomp): It is a sandbox
used in the Linux kernel. If seccomp is applied properly
in strict mode, it only allows the running process to
execute basic system calls like read(), write(), exit(), and
sigreturn().
3) User Account Control (UAC): Microsoft's Windows
Operating Systems makes use of a kind of sandbox by
restricting user's access controls with a low process
mode. This was implemented from the start of
Microsoft's Windows Vista operating systems. The low
process mode called the User Account Control (UAC),
works in a non-privileged mode and only allows the user
to write to a specific directory and with specific registry
keys.
4) Rule-based execution: It controls the system by
assigning access levels for users or programs by a set of
specified rules. Access level permissions of users for
performing process level activity (what processes are
started and spawned etc.), and also controlling the
file/registry security (which programs can read/write to
the file system/registry) can be achieved by rule based

32 Indian Journal of Computer Science • May - June 2019

III. BENEFITS AND DESIGN

OF APPLICATION SANDBOX

The main benefit of a sandboxed app than a non-
sandboxed app is that a non-sandboxed app has the full
rights and permissions of a user who is running the app.
So, it has access to all the resources that the user can
access and is more vulnerable to attacks. A sandboxed
application environment restricts this by its design,
thereby securing the system. Both of these design
strategies are discussed next.

A. Case Without Application Sandbox

The representation of an application working without
any sandbox is shown in Fig.1. [2]. In this case, the
application, app1 has unrestricted access to all the user
data and to all the system resources. So here, an attacker
who gains access to the application can get track of the
entire files in the system and can also tamper with the
system resources. This type of design strategy always
places security holes, that an attacker can potentially
make use of, and take control of the entire system through
the application itself.

B. Case With Application Sandbox

The representation of an application working within

execution. Linux Operating System makes use of
SElinux and Apparmor security frameworks for this to
achieve.
5) Virtual machines: It works like an actual operating
system. It is a guest operating system which boots and
works on top of the actual host machine. The guest
operating system is sandboxed and is permitted to access
the host machines resources only through an emulator.

II. HOW APPLICATION SANDBOX

WORKS

Application sandbox is an access control technology
which is mostly enforced at kernel level. Sandboxing of
applications is designed in such a way that users have the
provision to choose what they share with an application.
This allows users with the option that their critical data
and access to the system itself is protected in its major
share, even if an application that is running in the system
is compromised and is vulnerable to attack. It needs to be
accepted in some way or the other as no technology is
perfect and so, the main aim here would be to minimize
the chances of potential risks, so that even if a successful
attack happens, the damage is minimized. So in this
sense, application sandbox does not prevent attacks
against the app, but it is useful in minimizing the harm a
successful attack can cause.

Fig. 1. The design of an application working without any sandbox applied

Indian Journal of Computer Science • May - June 2019 33

hardware etc.
So an application working in sandbox must explicitly

state its intent for acquiring higher level privileges for
operations like:

(i) Accessing hardware like camera, microphone etc.
(ii) Access for network operations (both inbound and
outbound operations).
(iii) Accessing user data like calendar, contacts etc.
(iv) Users storage space (read / write access to internal,
external storage etc.).

Applications not following this rule (explicitly
requesting for higher level privileges, if needed) needs to
be rejected its access at runtime.

IV. EXISTING IMPLEMENTATIONS OF

APPLICATION SANDBOX IN MOBILE

OPERATING SYSTEMS

The most widely used mobile operating systems in
the world, namely Android and iOS, both support and

a sandboxed environment is shown in Fig. 2. [2]. In this
case, the application, app1, has only restricted access to
its own data and resources. Here, users have the
provision to choose what data and resources they share
with the application. Since all the access permissions are
explicitly given by the user, on the basis of his/her
interactions with the application, app1, the user's data
and resources other than what app1 is granted access is
isolated from app1. This design strategy is somewhat
more secure than what is done in case A. So the user is
permitted to assign specific rights to an application.

C. Principles to Follow While Designing an
Application in a Sandboxed Environment

As explained in the previous section, a sandboxed
environment only allows the application to have a
restricted set of data and resources based on what
permission the user has given to it. By doing so, it
protects the system from most of the attacks like
corruption or deletion of user data, hijacking system

Fig. 2. The design of an application working with sandbox applied

34 Indian Journal of Computer Science • May - June 2019

holds the app's bundle, and the data container directory
holds the data for both the app and the user. The data
container directory can create further sub directories
within itself so that data can be organized. A
representation of an iOS application operating within its
own sandbox directory [1], [3] is shown in Fig. 3.

In general, an application installed in iOS is restricted
from accessing or creating files outside its container
directory. An exception to this kind of access restriction
can be achieved by doing some specific tasks with the
help of public system interfaces (for example, an
application is allowed access to the users contacts) [1].
Even though the security architecture of iOS [1] is done
in a better way, it became a practice that users jail
breaking devices running iOS operating system became
more to get rid of the access restrictions put by this
sandbox strategy.

make use of application sandbox in their own ways. The
application sandbox implementation of both of these is
discussed next.

A. Application Sandbox in iOS

For security purposes, the file system of iOS is
treated in such a way that users do not have direct access
to the file system. The implementation of iOS follows a
sandbox (commonly referred to as jail), where access to
the file system namespace and to unneeded network
operations are prohibited. This design strategy gives an
iOS application access only to the directories which
reside inside its own sandbox directory. For this to be
achieved, the installer creates different container
directories inside an application's sandbox directory
during the installation of an app. The container
directories that were created are meant for different
purposes. For example, the bundle container directory

Fig. 3. An iOS application operating within its own sandbox directory

Indian Journal of Computer Science • May - June 2019 35

the app/kernel boundary.
d) In Android 9 all non-privileged apps (with targetSdk-
Version >= 28 (which specifies the API Level that the
application is designed to run)) must run in individual
SELinux sandboxes, providing MAC on a per-app basis.
This protection improves app separation, prevents
overriding safe defaults, and (most significantly)
prevents apps from making their data world accessible.

V. MOBILE OPERATING SYSTEMS

AND MALWARES

A common question that normally arises in the mind
of every smartphone or tablet (either running Android or
iOS) user is that “can their devices be affected by
viruses?” The answer to this question is that it won't
happen in the traditional sense like a computer virus. The
most common threat to mobile operating systems is in the
form of malwares.

Malwares are not self replicating threats like a virus.
But if proper security measures are not taken, these can
cause more damages than a virus. Malwares come in
many forms, like, a spyware which gathers and steals
personal data for third parties, a Ransomware which
holds personal files as hostage and demands a ransom in
order to release them.

A. How users can trace whether or not their device is

affected by malwares?

Malware, like viruses, is all about the stealth attack. It
steals users' documents and sensitive information without
their prior knowledge and utilizes them. So users always
need to be aware about this fact, and check for
vulnerabilities frequently to stay secure. Some of the
facts that the user should look forward to know whether
the device is secured or not are stated below:

· Data usage keeps increasing without user's knowledge

· Excessive crashing of applications

· Adware pop-ups more than normal

· Unfamiliar apps installed without users knowledge

· Faster battery drains than normal

· Device keeps overheating in idle conditions

B. The major cause of malwares on both platforms with

the differences in Application Signing process, File

System Namespace, and Software Updates

Both of the operating systems, Android and iOS are
designed in a better way to make the system secure.

B. Application Sandbox in Android

As Android is an operating system which makes use
of the Linux based kernel. It follows the Linux user-
based protection for applications, and isolates each
application. The sandbox is based on decades-old UNIX-
style user separation of processes and file permissions.

For this to work, Android assigns a unique user ID
(UID) to each application. This UID is used to set up a
kernel-level Application Sandbox. The kernel does the
security between apps and secures the system by
assigning user ID (UID) and group ID. By default, apps
can't interact with each other and have only restricted
access to the operating system.

For example, if application A tries to access
application B's data without necessary permission, the
operating system protects against this behavior, because
application A does not have appropriate user privileges to
do this. This helps the system in securing against the
malicious behavior of applications.

As Application Sandbox is in the kernel, all of the
software above the kernel, such as operating system
libraries, application framework, application runtime,
and all application run within the Sandbox. There are no
restrictions for application developers on Android,
regarding how an application can be written to enforce
security; in this respect, native code is as sandboxed as
interpreted code.

1) Protections in Android

Android uses a number of protection mechanisms to
enforce application sandbox. The enforcements applied
are implemented and introduced over time in various
Android version upgrades. This implementation has
strengthened the original UID based discretionary access
control (DAC) sandbox. Various protection mechanisms
[4] introduced on different Android versions are:
a) From Android 5.0, SELinux provided mandatory
access control (MAC) separation between the system
and apps. However, third-party apps ran within the same
SELinux context, so inter-app isolation was primarily
enforced by UID DAC (Discretionary Access Control).
b) From Android 6.0, the SELinux sandbox was
extended to isolate apps across the per-physical-user
boundary. This provided safer default for private app
data (however, apps can override these defaults).
c) From Android 8.0, all apps were set to run with a
seccomp-bpf filter (an extension of the seccomp security
facility used in the Linux Kernel) that limited the system
calls that apps were allowed to use, thus strengthening

36 Indian Journal of Computer Science • May - June 2019

that are unnecessary are prohibited.
The lack of security patches rolled out on most of the

outdated devices running Android and also its open
source nature makes it vulnerable to attacks. On the other
hand, jail breaking an iOS device leads to the existence of
more malwares on its platform.

C. Analysis of Reported Vulnerabilities on Both

Platforms

As part of the analysis process various information
were collected from different sources [6], [7] to know
how fast the reported number of vulnerabilities are
growing year by year on both platforms, and also by the
type of malicious behavior. Based on that the
vulnerabilities reported on Android platforms year by
year, for the years from 2009 to 2018, is shown in Fig. 4.
Also, the reported vulnerabilities on these years based on
the type of malicious behavior are shown in Fig. 5. The
vulnerabilities reported on iOS platform year by year, for
the years from 2009 to 2018, is shown in Fig. 6. The
reported vulnerabilities on these years based on the type
of malicious behavior are shown in Fig. 7.

VI. CONCLUSION

As the studies specified in this document,
Application Sandbox is one security mechanism which is
used widely in most of the operating systems in their own
ways of implementations. So what a user needs to do keep
in mind is that security threats are increasing day by day,
and every user who is using devices having mobile
operating systems, needs to think before they share their
sensitive documents with an application. Users also
needs to keep in mind the fact that giving excessive
permissions to an application can also lead to
vulnerabilities, as the use of fake applications, and
hackers taking extensive control of it to mislead the
control of the device itself is increasing. So the intention
of this document is to give users the awareness so that
they need to use the inbuilt Sandbox technology in a
proper way to achieve better levels of security in their
systems.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous
reviewers for their valuable and insightful comments on
the details of this document.

However, attackers make use of minor flaws in the
design to check for vulnerabilities and take control of the
system.

Android makes use of its Play Store for users to
download and install applications on their system.
Applications can also be installed from outside. This is
what hackers utilize to install malicious apps on devices.
iOS on the other hand permits only signed applications
from its App Store to be installed on its devices, thereby
securing it against fake and malicious applications (an
exception to this is where attacker jailbreaks an iOS
devices to get rid of these limitations).

Another area where both these operating systems
differ is in the frequency of software updates being
released and the number of devices being supported
overtime. It can be surely said that iOS devices gain
advantage in this factor as for iOS devices, both the
hardware and software are designed by the same
company, Apple Inc. So, security patches and newer
versions of the operating systems are released more
frequently, and even supported for outdated devices. For
Android, it too gets security patches and updates for the
operating system, but the frequency depends on how the
manufacturers of different hardwares using Android are
providing it. Also, for outdated devices having old
hardware, latest releases of software or security patches
were not confirmed in most cases. As Android is an
operating system developed by Google, latest software
updates and security patches are promised for Google's
own devices (like Google Pixel) and devices running
under Android One programme (for atleast two years
from the release of the device as promised by Google).

As described in the Section IV of this document, both
these platforms, Android and iOS, employ Application
Sandbox in their own ways. Android is a Linux based
operating system, it does follows the security measures
derived from it. Android version 8.0 makes use of an
extension (seccomp-bpf) of the Linux Kernel based
sandboxing technique, seccomp (Secure Computing). It
also employs SELinux to enforce mandatory access
control (MAC) over all processes [5], which use a Linux
Kernel feature called LSM (Linux Security Modules,
which works as a security framework to provide services
to security modules). iOS on the other hand is somewhat
more restrictive and provides a more secure approach in
the case of Application Sandbox. Here, an application
which is installed has only restricted access to data which
resides inside its own sandbox directory. It makes uses of
a kind of restricted Sandbox (jail), so that the file system
namespace is restricted to the user. Also network services

Indian Journal of Computer Science • May - June 2019 37

Fig. 4. The number of reported vulnerabilities on Android year by year, for the years from 2009 to 2018 [6]

Fig.5. The number of reported vulnerabilities on Android based on the type of malicious behavior for the years

 from 2009 to 2018 [6]

38 Indian Journal of Computer Science • May - June 2019

Fig. 6.The number of reported vulnerabilities on iOS year by year, for the years from 2009 to 2018. [6]

Fig. 7. The number of reported vulnerabilities on iOS based on the type of malicious

behavior for the years from 2009 to 2018 [6]

Indian Journal of Computer Science • May - June 2019 39

Available: https://source.android.com/security/selinux
[6] “CVE details Android: Vulnerability statistics,”
[Online]. Available:
https://www.cvedetails.com/product/19997/Google-
Android.html?vendor_id=1224
[7] “CVE details iPhone OS: Vulnerability Statistics,”
[Online]. Available:
https://www.cvedetails.com/product/15556/Apple-
Iphone-Os.html?vendor_id=49

REFERENCES

[1] J. Philip and M.Raju “An overview about the security
architecture of the mobile Operating System iOS,”
Indian Journal of Computer Science, vol. 4, no. 1, pp. 13-
1 8 , J a n u a r y - F e b r u a r y 2 0 1 9 . D o i :
10.17010/ijcs/2019/v4/i1/142412
[2] “App Sandbox Design Guide.” [Online]. Available:
https://developer.apple.com/library/archive/documentat
ion/Security/Conceptual/AppSandboxDesignGuide/Ab
outAppSandbox/AboutAppSandbox.html
[3] “File System Programming Guide.”[Online].
A v a i l a b l e :
https://developer.apple.com/library/archive/documentat
ion/FileManagement/Conceptual/FileSystemProgramm
ingGuide/FileSystemOverview/FileSystemOverview.ht
ml
[4] “Application sandbox.” [Online]. Available:
https://source.android.com/security/app-sandbox
[5] “Security-enhanced Linux in Android.” [Online].

About the Authors

Jithu Philip received M. Sc. degree in Computer Science from School of Computer Sciences,
Mahatma Gandhi Univ.ersity, Kottayam, Kerala, India in 2014. He is currently working as
Multimedia Specialist with Philco Media, Kottayam, Kerala, India. He is also focused on conducting
simulations as an independent security researcher and has written research papers related to
Operating Systems and Computer Security.

Merin Raju received M. Sc. degree in Computer Science from School of Computer Sciences,
Mahatma Gandhi University, Kottayam, Kerala, India in 2014. She is currently working as Lecturer
in Computer Science, Department of Commerce, Bishop Kurialacherry College for Women,
Amalagiri, Kottayam, Kerala, India. Her research interest is computer security.

40 Indian Journal of Computer Science • May - June 2019

