loT Operating Systems : Perspective, Availability and
Proposed New Architecture

* Parthavi Gor

** Taslim Divan

*** Divya Makwana
**%*% Himani Sharma
*xxxx D, K. Jhala

Abstract

Internet of Things (loT) is penetrating our lives faster than earlier due to the fact that it can create valuable real time data without
any human interference. As there is no human involved, data generation is certain irrespective of any situation. The accuracy
depends upon the sensors used in the implementation. Operating System is a basic and important part of any computational
system, so is the case with loT. However, loT is still in its infancy, proper standards are yet to be developed and formalized. There are
many loT Operating Systems available in the market, both open source and closed. Users select from the available OS as per their
suitability and requirements. However, there is no standard Operating System which can suit all loT installations/designs. This
paper discusses the main features of existing loT Operating Systems and parameters suitable for loT Operating Systems. While
using these existing Operating Systems, we have come across many issues, both technical and management. These issues are
discussed in this paper with utmost care and we have tried to address the users’ concern with these. Based on these issues, we tried
to derive revised architecture of loT Operating System which can take care of these issues if they are implemented. We have taken
into account the existing architecture of Contiki and RIOT OS while deriving revised architecture. Since loT is slowly but surely
spreading its wings to industrial applications, security is utmost important. Many security issues are still to be addressed by

Keywords : Contiki, loTOS, RTOS, Security

existing Operating Systems; hence, our main concernis to address such issues.

. INTRODUCTION

IoT has become a buzzword in the field of
Information and Communication Technology (ICT) due
to its applicability in a wide variety of areas. Internet
computing beyond computers has become a reality with
the emergence of [oT. [oT has become a darling of users
due to its affordability and vast reach. It has touched
almost all areas/domains of human life for betterment.
The core competence of 10T is to generate and store data
all the time without any human intervention. This has

created big shift in Big Data analytics and possibility
exists to have real time data for better monitoring and
control. IoT needs seamless integration of many
technologies which include cellular (4/5G etc.), wireless
network technologies, fog computing, Big Data,
operating systems etc. [4]. Research in these areas will
bring more advanced and intelligent IoT which can pave
the way for the next industrial revolution, which is
popularly known as Industry 4.0. Integration of IoT with
Machine Learning/ Deep Learning will give birth to an
altogether new domain of real time data collection (by

Manuscript received July 14 2019; revised August 5,2019; accepted August 18,2019. Date of publication October 5,2019.

*G. P. Nishilbhai is a student of Bachelor of Engineering, Gujarat Technological University, Ahmedabad, Gujarat—382 424.

** D.T.Rajabshais astudent of Bachelor of Engineering, Gujarat Technological University, Ahmedabad, Gujarat—382 424.

*#% D. M. Jagdishbhai is a student of Bachelor of Engineering, Gujarat Technological University, Ahmedabad, Gujarat—382 424.

*#** H. S. Vishnubhaiisa student of Bachelor of Engineering, Gujarat Technological University, Ahmedabad, Gujarat—382 424.

####k D, K. Jhala is Visiting Faculty at Bhaskaracharya Institute for Space Applications and Geo-Informatics, Gandhinagar,

Gujarat, 382 007. (email : dk.jhala@gmail.com)
DOI:10.17010/ijcs/2019/v4/15/149456

18 Indian Journal of Computer Science * September - October 2019

IoT devices) and control/forecasting [using Machine
Learning (ML) / Deep Learning (DL)] techniques. This is
likely to lead to complete or partial elimination of human
interference in many domains, specially industry.

Operating Systems (OS) are one of the very
important ingredients of IoT solutions. Operating
Systems are traditionally used as an interface between
programs and under lying hardware to relieve programs
from handling complex functions which enable them to
focus more on their core functionality based on specific
applications. In most cases, OS were mainly used on high
end computing devices having sufficient processing and
memory power and having no or less power constraints.

Emergence of IoT paradigm has brought a
paramount shift in the use and requirement of Operating
Systems as loT domain demands diverse requirements.
Operating systems (OS) are essential foundations for
enabling IoT devices. Traditional personal computers
(PCs) and mobile devices were built on dominant
operating systems, namely Linux/Window/Android etc.
While these operating systems provide standardized
software platforms, they cannot successfully function
within the economic constraints that drive the [oT space.
10T devices are expected to be deployed in billions and
trillions, at much lower capital and operational
expenditure than those required for PCs and smart
phones. An operating system tuned for [oT devices needs
to deliver scalability, portability, connectivity, security,
usability, and multi-app execution.

Il. loT DESIGN

Design of IoT solutions needs to balance many things
such as hardware, software, network requirements etc.
Application software can influence hardware
implementation and physical design. As designs become
more compact and even wearable, the mechanical design
can constrain the hardware and hence, the software
capabilities of the device. Hence, [oT domain needs an
operating system that can operate on constrained
hardware while still delivering the app-driven
experiences and services expected of [oT devices.

Use of loTdevices depends upon the scale and scope
of particular applications and locations where they are
implemented. Recently, the Engineering Internet Task
Force (IETF) standardized a classification of these
devices in three categories based on memory capacity
[14].

Class 0 devices have the smallest resources (<<10
KB of RAM and <<100 KB Flash), for example, a

specialized mote in a Wireless Sensor Network (WSN).

Class 1 devices have medium-level resources
(approximately 10 KB of RAM and 100KB of Flash)
allowing richer applications and more advanced features
than rudimentary motes, for example, routing and secure
communication protocols.

Class 2 devices have more resources, but are still
very constrained compared to high-end IoT devices and
traditional internet hosts.

For specialized and resource constraints class 0
devices, normally any type of Operating System is not
suitable. Instead, hardware specific software is preferred.
For class 1 and 2 [oT devices, hardware independent OS
needs to be used which provides flexibility for large scale
software development and maintenance. Hence, this
paper discusses the [OT OS mainly used for class 1 and 2
types of devices. This paper also analyzes more
prominent IOT OSs, both open source and commercial
(closed source), which are compatible with memory size,
IP protocol, programming tools, and large section of
popular hardware platforms.

I1l. IMPORTANT PARAMETERS FOR
loT OS

IoT domain is constrained by many things as
compared to normal computing domain. loT domain
requirements are altogether different and cannot be
satisfied by usual computing procedures or tools. This
section provides major and important parameters driving
the selection of IoT OS. It is interesting to note that few
parameters cannot be fulfilled by existing OS in totality.

A. Footprint [1]

As 10T devices are required to be deployed in large
numbers at remote locations, they always have memory
limitations in terms of both RAM and ROM unlike
traditional PCs or computing devices. Hence, [oT OS
should be optimized to provide required IoT
functionality and required data structure. It is expected
that [oT OS should have low memory, power and
processing requirements to have minimum overhead.

B. Heterogeneity [1]

10T solutions use different types of hardware having
different make micro controllers. At times different
hardware boards are used for the same solutions. Scale of
diversity is very large for hardware boards as well as
communication protocols unlike traditional computing

Indian Journal of Computer Science * September - October 2019 19

solutions. IoT OS should be able to cater to these
requirements of supporting vast variety of hardware and
communication/network protocols.

C. Scalability, Portability, and Modularity

[oT OS should have all these three embedded in them.
Scalability should be from node to gateways. OS should
be able to port to any hardware. Modularity should
provide kernel as core and other application
requirements as add on packages. Modular approach
will help reduce the size of OS as developers can select
components as per design requirements.

D. Connectivity

Network is core to [oT. In any IoT solutions, IoT
devices are connected to have communication among
themselves as well as over internet. Hence, network
requirements in [oT are very different to have multiple
protocol support. IoT uses a variety of network
protocols; both wireless (IEEE 802.14, Blue tooth etc.)
and wire line, at data link and network layer, the
underline IoT OS should support multiple stacks to
fulfill these requirements.

E. Power Requirements

IoT devices are normally implemented at remote
locations and should be powered on all the time. This
requires use of batteries which make them power
deficient. Since power is consumed by many sub
components of [oT (sensors, hardware circuits, radios
etc.), it is necessary that OS should have various
provisions to save energy. Also, due to location
constraints, IoT device batteries should provide power
for longer period of time with one time charging. Power
saving measures can be achieved by providing sleep
mode facility, minimizing or reducing tasks to be
executed etc.

F. Security

Any networked systems should adhere to the required
security standards. IoT being connected to the internet
and part of any critical infrastructure should also adhere
to security and safety standards. Hence IoT OS should
provide security to the device by way of secure boot,
SSL, drivers, and components for encryption. Security is
a continuous process, therefore, OS should have
provision for remote security updates for [oT devices in
the field.

G. Reliability

This is one of the most important parameters for IOT
OS as devices are at remote locations which can't be
maintained frequently, and should work for years without
failure. This should be achieved by proper certification of
[oT OS for certain applications.

IV. EXISTING OPEN SOURCE AND
COMMERCIAL loT OS

There exist many OS which are used by developers for
IoT applications. Selection criteria depends upon
application requirements, availability of network,
location etc. This paper will discuss some of the
prominent open source [oT OS which are mainly used for
different loT projects/applications.

Contiki [5] is a popular OS because of its light
weight, maturity, and flexibility. It is used for networked,
memory-constrained, and low-power wireless loT
devices. Few examples of its use include street lighting,
sound monitoring for smart cities, and radiation
monitoring etc. Contiki supports wide variety of
hardware boards and network protocols. Major features
include multi-tasking, pre-emptive multi-threading,
support of web browser and internet protocol including
IPV6. Cooja, single thread simulator makes it slow for
specific network scenarios. Existing versions may not
support new loT hardware platform and need to be
modified/developed.

RIOT [6] is using micro kernel architecture with low
memory use like Contiki. Developers can use C and C++
for writing application programs. RIOT also has multi-
threading and real time capabilities. It also provides
SSL/TSL libraries. RIOT can run on 8, 16, and 32 bit
processors and is compliant with many existing loT
hardware boards. It supports network stacks, namely
IPV6,6LoWPAN, RPL, UDP, TCP and CoAP.

TinyOS [8] is an embedded, component-based
operating system and platform for low-power wireless
devices, such as those used in wireless sensor networks
(WSNs). It is written in C programming language called
nesC. It is fully non-blocking and has one call stack.
Hence I/O operations which are longer are treated
asynchronously and can be called back. It maintains high
concurrency with one stack by stitching many small
events. For large computations, tasks are used. It supports
IPV6 stack using 6LoWPAN. Better network life time is
possible due to low power listening. Tiny OS demands
some adjustment for communication between hardware
and software due to low voltage restrictions. Popular

20 Indian Journal of Computer Science * September - October 2019

applications include smoke detection devices, military
activity, temperature control, bank's security systems,
resource monitoring etc.

Ubuntu Core is a specially designed [oT OS which is
light weight, secure, and transactionally updated. An
Ubuntu Core system is built using snaps: a core snap, a
kernel snap, a gadget snap, and usually runs one or more
application snaps. Major features include faster, reliable,
highly secure Linux distribution. It also provides
public/private key based validation and authentication.

Nucleus RTOS [10] is a real-time operating system
(RTOS) offered by the Embedded Software Division of
Mentor Graphics, supporting 32 and 64 bit embedded
platforms. The Nucleus RTOS is designed for real-time
embedded systems for use in medical, industrial,
consumer, aerospace, and loT applications. Its main
features include power management, 64 bit support,
process model, safety certification etc. The Nucleus
provides wide networking stack that supports over 60
networking protocols including IPV4 and IPV6. It is one
of the major OS used in many implemented IoT
installations.

MBED OS [7] is open source OS which only
supports ARM processors. This OS has footprint in Smart
Home and Wearable devices domain of IoT. The OS
differs from many other embedded operating systems
because it is single-threaded as opposed to multi-
threaded. Mbed OS provides the Mbed C/C++ software
platform and tools for creating microcontroller firmware
that runs on loT devices. It consists of the core libraries
that provide the microcontroller peripheral drivers,
networking, RTOS, and runtime environment, build
tools, and test and debug scripts. These connections can
be secured by compatible SSL/TLS libraries.

Wind River VX Works [11] is one of the most used
commercial OS today in IoT domain. It is highly scalable
and also provides security features which are important
for [oT applications. Vx Works is very well-known in the

industrial, medical, and aerospace fields because it is one
of'the few RTOS that have met the necessary certification
requirements to be used in these industries. VxWorks
supports Intel architecture, POWER architecture, and
ARM architectures. The RTOS can be used in multi core
asymmetric multiprocessing (AMP), symmetric
multiprocessing (SMP), mixed modes, and multi-OS
designs on 32- and 64-bit processors.

Window10 [9] for IoT is a family of operating
systems from Microsoft. It is designed for use in
embedded systems. Microsoft currently has three
different subfamilies of operating systems. First is
Windows 10 for IoT Mobile, which supports the ARM
architecture. Second is Windows 10 for IoT Core which
supports Raspberry Pi and Intel Atom and third, Windows
10 for [oT Enterprise, more or less full-blown Windows
10 Enterprise, but restricted to running a single
application. This has advantage of having large MS
community users who can develop applications using
Visual Studio. This is useful for in house app
development.

Google Brillo [12] is an Android-based embedded
operating system platform by Google. It is aimed to be
used with low-power and memory constrained IoT
devices, which are usually built from different MCU
platforms. As an IoT OS, it is designed to work with as
low as 32—-64 MB of RAM. It will support Bluetooth Low
Energy and Wi-Fi. Along with Brillo, Google also
introduced the Weave protocol which these devices can
use to communicate with other compatible devices. This
means that smart devices don't necessarily need to have
embedded Android as their OS, they only have to have the
ability to communicate using Weave.

Table I gives a comparison of OS.

loT OS Comparison
The fact is that IoT domain requirements are very
diverse. One particular OS cannot fulfill all its

TABLE I.
0OS COMPARISON

0os Min RAM Min ROM Support C Support C++ Multi Threading Architecture Type of Scheduler

Contiki <2KB <30KB Partial No Partial Monolithic Cooperative, Preemptive

RIOT <=1.5KB <=5KB Yes Yes Yes Micro Kernel Tickless, Preemptive,
Priority based

Tiny OS <1KB <4KB No No Partial Monolithic Cooperative

Mbed OS <=5KB <=15KB Yes Yes Yes Monolithic Preemptive

Brillo <32MB <128MB Yes Yes Yes Monolithic

Indian Journal of Computer Science * September - October 2019

21

requirements, and therefore, developers need to choose
and pick as per their choice [4].

V. ISSUES AND CONCERNS

We have observed that there is no single loT OS
which can fulfill all requirements of any loT design. Lack
in standards seems to be the major concern for IoT OS.
Due to varying nature of loT implementations, it is very
difficult to have all required features to build on one
particular OS. This diverse need of IoT domain has
created major security issues in this field. A multitude of
IoT Operating Systems is a bad news for the internet [3].
Present internet has one major advantage in terms of use
of Operating Systems by its computing devices. We have
very limited OS which rules these devices. Due to this, it
is very easy to handle security related issues like patching
the OS, finding the vulnerability. With fewer versions of
patches, we are able to mitigate the risk of security breach
very fast. Same will not be the case with [oT in place, as
we have seen that IoT OS has very large domain with
variety of vendors in market. This issue will aggravate
the security of internet and [oT devices. When magnitude
of 10T devices will cross 20 billion mark by 2020 [3],
security issue will become unmanageable unless
standards are defined for [oT do main including IoT OS.
Another problem is how to install patches in [oT devices
as and when required. There is no defined mechanism in
place, as in many cases loT devices are installed in
network constrained places. Same is the problem with
virus mitigation risk. Present computing devices are
normally connected to centralized virus systems for
getting periodical updates. However, in absence of such
mechanisms in case of IoT, there is always a risk of
getting virus in the [oT system.

IoT industry has already experienced notorious
loT-based DDoS attack named Mirai because of the
exploitation of a known vulnerability in the operating
systems used by dozens of CCTV cameras and DVRs. A
newly discovered Trojan malware, dubbed Rakos uses
brute force SSH login attack to compromise IoT devices
embedded with vulnerable versions of Linux [2]. When
IoT is being extended on large scale for Home
Automation and Industry 4.0, such concerns are of
paramount importance [2].

VI. PROPOSED REVISED loT OS
ARCHITECTURE

We have considered Contiki and RIOT OS

architecture while deriving at revised architecture for [oT
OS. The following aspects are proposed/ considered
while building robust [oT OS.

1. Standard modular architecture for IoT OS to be
developed which can cater to any footprint of memory.
Stringent standards should be defined for authentication
and authorization. Audit and logging standards should
also be in place[3]. It is proposed to have configuration
module for various network stacks and type selection of
scheduler.

2. Interoperability by defining common interface among
various network stacks for inter-communication of [oT
devices with diverse OS. This will also partly take care of
scalability. It is proposed to have “common-wl-interface”
module which is software for communication with other
IoT devices over wireless by providing paring (similar)
software module in other devices.

3. Push mechanism from centralized node should be
adopted for patch update wherever network connectivity
is not a bottleneck. This module will keep track of
previous updates installed for continuity of patch update.
This can be online or offline depending on memory
availability.

4. Security module can provide various provisions for
access, authentication, and keeping track of important
security configuration related parameters. This module
also verifies the user who communicates through
“common-wl-interface from other IoT devices. This
module needs to maintain proper logging of outside users
coming through this interface.

5. OS certification should be made mandatory.
Certification details may be linked to security module for
verification.

VIl. CONCLUSION

It is certain that loT technology of future is going to
change the use of internet, and the way we have used it so
far. Any new technology, when in infancy always has
many issues and challenges. 10T is also no exception.
This paper aims to discuss various options available for
10T OS in the present [oT domain space with important
parameters impacting the selection of OS. It is very clear
that lack of standards in this field has created confusion in
the IoT community. This needs to be addressed to
mitigate various technological problems related to
security, modularity, and interoperability. Revised loT
OS architecture is also proposed for betterment and
approaches towards some standard in this field. It is
expected that research guidance provided here will help

22 Indian Journal of Computer Science * September - October 2019

Application

Management nodes

Common wireless
module

Package

System

Configuration mode

Kernel(monolithic)

drivers

I

—

Network scheduler

Drivers/Peripherals

Security

Micro controller

Hardware

Patch updating

Fig. 1. Revised Architecture Diagram

the community in better development of products.

REFERENCES

[1]Devopedia, "IoT operating systems," Version 9,
August 23, 2018. Accessedon: Aug. 23, 2019 [Online].
Available: https://devopedia.org/iot-operating-systems
[2]Jain, H.,“Amultitude of IoT Operating Systems is bad
news for the safety of the internet.” [Online]. Available:
https://www.fortinet.com/blog/industry-trends/a-
multitude-of-iot-operating-systems-bad-news-for-the-
safety-of-the-internet.html

[3] A. Banafa, “3 major challenges IoT is facing,”
2017 .[Online]. Available:
https://www.bbvaopenmind.com/en/technology/digital-
world/3-major-challenges-facing-iot/

[4]Y. B. Zikria, S. W. Kim, O. Hahm, and M. K. Afzal,
“Internet of Things (IoT) operating systems
management: Opportunities, challenges, and solution,”
2019.doi: 10.3390/s19081793

[5] Contiki: The Open Source OS for the Internet of
Things. Available [Online:
https://en.wikipedia.org/wiki/Contiki

[6] sRIOT: The Friendly Operating System for the

Internet of Things. [Online]. Available: https://www.riot-
o0s.org/

[7] MbedOS. [Online]. Available
https://en.wikipedia.org/wiki/Mbed

[8] TinyOS. [Online].Available:
https://en.wikipedia.org/wiki/TinyOS

[9]WindowsloT. [Online]
.Available:https://en.wikipedia.org/wiki/Windows_IoT
[10] Nucleus RTOS. [Online]. Available:
https://en.wikipedia.org/wiki/Nucleus RTOS

[11] VxWorks. [Online]. Available:
https://en.wikipedia.org/wiki/VxWorks

[12]Google Brillo.[Online].Available:
https://en.wikipedia.org/wiki/Android Things

Indian Journal of Computer Science * September - October 2019 23

About the Authors

Gor Parthavi Nishilbhai is final year student of Bachelor of Engineering at Gujarat
Technological University. Her major areas of interest are Internet of Things and Machine Learning.

Divan Taslim Rajabsha is final year student of Bachelor of Engineering at Gujarat
Technological University. Her major areas of interest are Internet of Things and wireless networks.

Divya Makwana Jagdishbhai is final year student of Bachelor of Engineering at Gujarat
Technological University. Her major areas of interest are Internet of Things and software
development.

Sharma Himani Vishnubhai is final year student of Bachelor of Engineering at Gujarat
Technological University. Her major areas of interest are Internet of Things, Machine Learning and
software development.

D. K. Jhalais Visiting Faculty at Bhaskaracharya Institute for Space Applications and Geo-
Informatics, Gandhinagar, Gujarat. He has about 35 years of experience in the field of ICT and
related areas. He has experience in the field of Networking as well He has worked on designing of
ICT projects, their development, and implementation at grass root level.

24 Indian Journal of Computer Science * September - October 2019

