Reinforcement Learning of 3D Musculoskeletal Model
for Walking or Running with Minimum Efforts

* Vikram Singh Chandel
** Subhabaha Pal

the anatomic model.

Abstract

In this work we are trying to build a controller for a musculoskeletal model that has the goal of matching a given time-varying
velocity vector. The major objective is building a musculoskeletal model which is fully comprehensive and reproduces realistic
human movements driven by muscle contraction dynamics. Spectrum of human movement will be generated through variations in

Keywords : 3D Musculoskeletal Model, Artificial Intelligence, Reinforcement Learning

. INTRODUCTION

There has been a lot of progress in technology now
which has increased interest in prosthetics for improving
human movement when it comes to 3D human model.
However, it was difficult for designing such kind
of devices as it was taking lot of iterations through many
designs. This is further complicated by the large
variability in response among many individuals.

Movement of human body depends upon many
factors such as geometry of bones, muscles movement,
angle between bones, habits, and emotions. Any changes
in these anatomical conditions can result in overall
movement. Our body has more than 300 muscles which
are responsible for movement. Whenever movement of
body takes place, the brain sends excitation signals to the
nervous system which further control the overall
movement of the body. Every time when movement
happens, the brain learns some sets of responses.

Recent developments are going on for this particular
purpose using Artificial Intelligence techniques to train
realistic, biomechanical models which will be key in

increasing our understanding of the human-prosthesis
interaction and help to accelerate development of this
field.

We use Reinforcement Learning (RL) to take care of
our issues and promote open source devices in RL to look
into the material science test system, the RL condition, and
the stage on which we run codes that are for the most part
open-source. We additionally empower RL to examine in
computationally complex situations with stochasticity and
profoundly dimensional activity spaces, pertinent to
genuine applications which will connect biomechanics,
neuroscience, and software engineering networks.

A. Reinforcement Learning

Reinforcement learning is a training method based on
rewarding desired behaviors and/or punishing undesired
ones. The learning method has been adopted in artificial
intelligence (Al) as a method of directing unsupervised
machine learning through rewards and penalties.
Reinforcement learning is used in operations research,
simulation information theory, game theory, control

Manuscript Received: April 3, 2020;

Revised:

April 25, 2020; Accepted: May 2, 2020.

*V. S. Chandel, Data Science Student, Manipal University, B-80 Aakriti Gardens, Nehru Nagar, Bhopal - 462 003, India.

(email : vsc8088@gmail.com)

** S. Pal is Senior Faculty, Data Science and Machine Learning, with Manipal ProLearn (Manipal Academy of Higher Education — South
Bangalore Campus), 3rd Floor, Salarpuria Symphony, 7, Service Road, Pragathi Nagar, Electronics City Post, Bengaluru—560 100, India.

(email : subhabaha@gmail.com)
DOI: 10.17010/ijcs/2020/v5/i2&3/152870

36 Indian Journal of Computer Science « March - June 2020

theory, simulation-based optimization, multi-agent
systems, swarm intelligence, statistics, and genetic
algorithms. It involves speech and text-based
communication. It is a technology behind chatbots,
virtual assistants, online translation services and many
more.

B. Components of Reinforcement Learning

Environment : Physical world in which the agent operates
State : Current situation of the agent

Reward : Feedback from the environment

Policy : Method to map agent's state to actions

Value : Future reward that an agent would receive by
taking an action in a particular state

C. Statement of the Problem

We are going to build a real time controller for simulated
agent to walk or run at a particular speed and direction.
Here, the agent which is a musculoskeletal model
interacts with an environment generally as physics
simulator by taking actions on so called muscle
excitations based on observations (a function of the
internal state of the model) in order to maximize the
reward.

Every time when walking is done by the
musculoskeletal model, there are certain sets of action
which are defined as positive and negative reward. For
example, let us suppose the model is walking in back
direction or falling apart, then it is a negative reward. If a
model is moving forward and taking proper steps, then it
is apositive reward.

There are certain sets of actions which define the sets
of positive and negative rewards. For example, a model is
moving forward but the steps are less in distance or model
neck is not properly aligned, which can be the reason of
its fall and this can become negative reward.

The model of the specialist included 22 muscles to
control 11 degrees-of-opportunity (DOF). At each cycle,
the operator got the current watched express, a vector
comprising of a set of qualities which incorporate ground
response powers, muscle exercises, muscle fiber, lengths,
muscle speeds, ligament powers, positions, speeds, and
increasing velocities of joint edges and body sections.

Muscle enactments try to create movement as a
component of muscle properties. For example, quality,
and muscle states, for example, current length, speed, and

second arm. A general gauge of muscle exertion will
be determined utilizing the total of muscle actuations
squared, a regularly utilized measurement in
biomechanical considers.

The main goal is to generate the controls such that the
model would move forward at 2 m/s. The total reward is
calculated as Summation of (4—|vx(st)—3|*2) function
from t=1 seconds to t=T.

(in this case stz is the state of the model at time .
Similarly, the vx(s) can be described as the horizontal
velocity vector of the pelvis in the state. The st can be
calculated as M(st—1,a(st1)). It also means the states which
follow the simulation and it is given by model M. In this
case, we are taking T as the episode termination time step
and it is equal to 1000 in case the model does not fall and
walks continuously for the full 10 second duration. It can
also be taken as equal to the first time point in case when we
are finding that the pelvis of our models falls below 0.6 m
in order to penalize the fall of the model).

We propose a new family of policy gradient methods
for reinforcement learning, which alternate between
sampling data through interaction with the environment,
and optimizing a ‘“surrogate” objective function using
stochastic gradient ascent, whereas, standard policy
gradient methods perform one gradient update per data
sample. We propose a novel objective function that enables
multiple epochs of minibatch updates.

D. Objectives

The aims of'this projectare to :

» Compute actions according to a Gaussian distribution
given by mean and variance.

e Compute the predicted value functions from the critic
model.

» Compute the desired function which will be later used
asregression target for the critic model.

» Calculates delta terms for every timestep in every
trajectory.

» Calculates general advantage estimates for every
timestep in every trajectory.

» Update the required parameters for the new actor and
the critic models so that model is finally properly trained.
E. Project Goal and Scope

» Use Reinforcement Learning (RL) to solve problems in
healthcare.

Indian Journal of Computer Science * March - June 2020 37

e Promote open-source tools in RL research, the
physics stimulator and the RL environment.

» Encourage RL research in computationally complex
environments, with stochasticity and highly-dimensional
action spaces relevant to real-life applications.

» Bridge biomechanics, neuroscience, and computer
science communities.

F. System Overview

OpenSim environment is used in this project.
OpenSim is an open-source stage for demonstrating,
recreating, and dissecting the neuromusculoskeletal
framework. It incorporates low-level computational
devices that are conjured by an application. The module
engineering of OpenSim urges clients to broaden
usefulness by building up their own muscle models,
contact models, controllers, and investigations. For
instance, around twelve examination modules composed
by various clients are accessible in OpenSim. These
examination devices ascertain joint powers, muscle-
prompted increasing speeds, muscle powers, and
different factors. Despite the fact that these investigations
were produced for various musculoskeletal models, they
have general appropriateness and can be utilized with any
OpenSim model. To make a muscle-driven reenactment
of a development, one should initially detail a unique
model of the musculoskeletal framework and its co-
operations with nature. The components of the
musculoskeletal framework are displayed by sets of
differential conditions that depict muscle withdrawal
elements, musculoskeletal geometry, and body
segmental elements.

Il. HUMAN MODEL
* 3D musculoskeletal model of healthy adult

» 8internal degrees of freedom (4 per leg)
hip_abd (+: hip abduction)
hip (+: extension)
knee (+: extension)
ankle (+: plantar flexion)
* 22 muscles (11 perleg)
HAB: hip abductor

HAD: hip adductor
HFL: hip flexor

GLU: glutei (hip extensor)

HAM: hamstrings (biarticular hip extensor and knee
flexor)

RF: rectus femoris (biarticular hip flexor and knee
extensor)

VAS: vastii (knee extensor)
BFSH: biceps femoris, short head (knee flexor)

GAS: gastrocnemius (biarticular knee flexor and ankle
extensor)

SOL.: soleus (ankle extensor)
TA: tibialis anterior (ankle flexor)

I1l. BIOMECHANICS

To summarize briefly, the agent is a musculoskeletal model
that includes body segments for each leg, a pelvis segment,
and a single segment to represent the upper

Fig 1. Representiion of 3D
Musculoskeletal Model

38 Indian Journal of Computer Science « March - June 2020

half of the body (trunk, head, arms). The segments
are connected with joints (e.g., knee and hip), and
the motion of these joints is controlled by the excitation
of muscles. The muscles in the model have complex
paths (for example, muscles can cross more than one
joint and there are redundant muscles). The muscle
actuators themselves are also highly nonlinear. For
example, there is a first order differential equation that
relates electrical signal the nervous system sends to a
muscle (the excitation) to the activation of a muscle
(which describes how much force a muscle will actually
generate given the muscle’s current force-generating
capacity).

Given the musculoskeletal structure of bones, joint,
and muscles, at each step of the simulation
(corresponding to 0.01 seconds), the engine computes
activations of muscles from the excitations vector
provided to the step() function

 actuates muscles according to these activations
» computes torques generated due to muscle activations
» computes forces caused by contacting the ground

» computes velocities and positions of joints and bodies

It also generates a new state based on forces, velocities,
and positions of joints in which each action, the
following 18 muscles are actuated (9 per leg) :

* hamstrings

* biceps femoris
 gluteus maximus
* iliopsoas

* rectus femoris

e vastus

e gastrocnemius

» soleus

 tibialis anterior. The action vector corresponds to
these muscles in the same order (9 muscles of the right
leg first, then 9 muscles of the left leg).

The observation contains 41 values:

* position of the pelvis (rotation, X, y)
» velocity of the pelvis (rotation, X, y)

* rotation of each ankle, knee, and hip (6 values)

« angular velocity of each ankle, knee, and hip (6 values)
» position of the center of mass (2 values)
» velocity of the center of mass (2 values)

* positions (x, y) of head, pelvis, torso, left, and right toes,
left and right talus (14 values)

» strength of left and right psoas: 1 for difficulty < 2,
otherwise a random normal variable with mean 1 and
standard deviation 0.1 fixed for the entire simulation.

* next obstacle: x distance from the pelvis, y position of
the center relative to the ground, radius.

Open source software system is used for modeling,
simulating, and analyzing the neuromusculoskeletal
system. OpenSim is built on top of core computational
components that allow one to derive equations of motion
for dynamical systems, perform numerical integration,
and solve constrained non-linear optimization problems.
In addition, OpenSim offers access to control algorithms
(e.g. computed muscle control), actuators (e.g., muscle
and contact models), and analyses (e.g. muscle-induced
accelerations). OpenSim integrates these components into
a modeling and simulation platform. Users can extend
OpenSim by writing their own plug-ins for analysis or
control, or to represent neuromusculoskeletal elements
(e.g. muscle models). In a graphical user interface, the user
is able to access a suite of high-level tools for viewing
models, editing muscles, plotting results, and other
functions. SimTrack, one of the OpenSim tools enables
accurate muscle-driven simulations to be generated that
represent the dynamics of individual subjects.

IV. UNDERSTANDING ACTION SPACE

The observation or the input to your controller consists
ofalocal target velocity map V and the body state S.

Visa2x11x11matrix, representing a 2D vector field on
an 11x11 grid. The 2D vectors are target velocities, and the
11x11 grid is for every 0.5 meter within =5 meters back-to-
front and left-to-side. For example, in fig. 2, the global
target velocity map (top-left) shows that the velocity field
converges to (5.4,—1.4) and the human model is at (5.4,0.0)
(end of the black line). Thus, the local target velocity map
(bottom-left) shows that the human model should
locomote to the right as the target velocity vector at
(0.0,0.0) points towards the right (i.e. close to [0,—1]).

Sisa 97D vector representing the body state. It consists
of pelvis state, ground reaction forces, joint angles and

Indian Journal of Computer Science * March - June 2020 39

rates, and muscle states. The keys of the observation
dictionary should be self-evident and explain what the
values represent.

For example, space [0,1] 22 represents muscle
activations of the 22 muscles, 11 per leg.

V. UNDERSTANDING OBSERVING
SPACE

The observation can be divided into five components:
the body parts, the joints, the muscles, the forces, and the
center of mass. For each body part component, the agent
observes its position, velocity, acceleration, rotation,
rotational velocity, and rotational acceleration. Similarly,
for each joint, the agent observes its position, velocity,
and acceleration. For each muscle, the agent observes its
activation, fiber force, fiber length, and fiber velocity.
The force component describes the forces acting on body

Fig 2. 3D Musculoskeletal Model Muscles
with Internal Degrees shown in X, Y and Z Plane

parts. Finally, the agent observes the position, velocity, and
acceleration of'its center of mass.

All the positions in the observation are absolute
positions, but we are more in terested in their positions
relative to the pelvis for their xx and zz coordinates. If the
head is behind the pelvis, the agent will likely fall behind,
regardless of its absolute position, whereas, if the head is in
front of the pelvis, the agent will likely fall forward or run.
Thus, the xx and zz coordinates for each body part should
be shifted by that of the pelvis.

V. METHODOLOGY

PPO (Proximal Policy Optimization) as an on-strategy
solver frequently experiences the issue of bigger change
and lower efficiency. To additionally build our efficiency,
we applied Deep Exploration with multi-head
bootstrapping, which has been demonstrated to unite a lot
quicker contrasted and e-covetous. So as to permit our
approach to intently follow the speed target, we infused the
speed as a component to the arrangement and worth
system. Finally, to address the center issue of nearby ideal,
we applied educational plan figuring out how to move
efficient and stable strides to different speed extend.

A. Model Architecture

Contrasted with general DDPG (Deep Deterministic
policy Gradient) network structures, it has two
unmistakable highlights. We infuse the objective speed
from the base of the two systems, as the worth capacity
needs to assess the present state dependent on track speed,
and the strategy needs to make the relating move to arrive
at the objective speed. This is like including the objective
speed as a component of the perception. Despite the
fact that it presents some commotion when the speed is
exchanging, it benefits more via consequently sharing
the information on various speeds. We likewise utilize
different heads for the worth and strategy arrange in our
model. It is a comparative design as profound
investigation, which re-enacts the troupe of neural systems
with lower cost by sharing the base layers.

B. Transfer Learning

We suggest that by sharing information on strolling or
running at various paces, it is possible for the agent to learn
progressively strong and efficient examples of strolling.
We found in our test that the shaky steps gained without

40 Indian Journal of Computer Science * March - June 2020

any preparation for low speed strolling don't function
admirably for rapid running. We explored on running
as quick as conceivable rather than at a specified speed.
We acquired an operator that can run quick with sensible
and characteristic strides similarly as people. Beginning
with the prepared arrangement for quick running, we
changed the objective to bring down speed strolling. This
procedure looks like exchange realizing, where we need
the "information" of step to be kept yet with a more slow
speed. Our quickest running has speeds over 4.0 m/s. We
moved the arrangement to 1.25 m/s, yet it brings about
motions that are as yet not normal enough and were
inclined to falling. In any case, we gained ground by
moving from a higher speed as the fall rate drops
generously.

C. Curriculum Learning

Educational plan learning learns a difficult task
continuously by artificially developing a progression of
undertakings which increment the difficulty level step by
step. As of late, it has been utilized to understand
complex computer game difficulties. As the immediate
exchange of a higher speed running approach to bring
down speed didn't function admirably, we conceived 5
undertakings to diminish the speed directly, with each
errand beginning with the prepared arrangement of the
previous one. Finally, we have a strategy running at target
= 1.25m/s, with common walks that look like a person
and low falling rate also.

D. Fine-tuning

In view of the pre-trained strolling model that focused at
1.25 m/s, we fine-tuned the model on the irregular speed
condition. Right off the bat, we attempted to compel the
arrangement to stroll at 1.25 m/s, given any objective
speed between - 0.5 m/s and 3.0 m/s. This was to make a
decent beginning for other objective speeds other than
1.2 m/s. We gathered strolling directions at 1.25 m/s, yet
changed the highlights of target speed and course to an
arbitrary worth. We utilized the gathered directions to re-
train the strategy with managed learning. Besides, we
utilized the re-prepared model as the beginning point,
and fine-tuned it in the randomized objective speed
conditions utilizing objective driven DDPG (Deep
Deterministic policy Gradient), which gives our final
approach.

VII. EXPERIMENTS

Our investigations contrasted educational program
taking in and gaining, without any preparation in the fine-
tuning stage. We utilized a similar model engineering for
the two tests. For the on-screen character model, we used
tanh as actuation work for each layer. For the pundit model,
selu [24] was utilized as enactment works in each layer
with the exception of the last layer. The markdown factor
for total prize calculation was 0.96. We likewise utilized
the edge skip stunt, as each progression of the specialist
compares to 4 re-enactment step in the earth with a similar
activity. Twelve heads were utilized for bootstrapped
profound investigation. This was chosen by considering
the exchange off between the different speculations of
each head and calculation cost by and by. We indicated the
examination of gaining without any preparation and
beginning from an approach learned with educational plan
learning. Each bend was arrived at the midpoint of on 3
autonomous investigations. Significant enhancements for
both execution and security for the educational plan
learning can be watched. Further examining the strolling
strides shows that educational program learning has a
progressively regular strolling signal. Fig. 3 is the learning
curve. Averages are computed from a set of 50 episodes. In
fig. 3, the agent walks forward while heading at strange
directions. (b) The skeleton walks naturally with small
steps.

VIll. UNDERSTANDING REWARD

A simulation runs until either the pelvis of the human
model falls below 0.60 m or when it reaches 10 s (i=1000).
During the simulation, you receive a survival reward every

10000
8000
£
5 6000
©
g
3
H
4000
w001 | = curriculum leaming
— learning from scratch
o 2500 5000 500 10000 12500 15000 17500 20000
Eprtodes

Fig. 3 (a). Model Learning Graph

Indian Journal of Computer Science * March - June 2020 41

timestep 1ii and a footstep reward whenever the human
model makes a new footstep step ‘i’ which mentions
steps. The reward is designed so that the total reward J()
is high when the human model locomotes at desired
velocities with minimum effort.

The footstep reward R step is designed to evaluate
step behaviors rather than instantaneous behaviors, for
example, to allow the human model's walking speed to
vary within a footstep as real humans do. Specifically, the

rewards and costs are defined as Ati = 0.01 sec is the
simulation timestep, vpel is the velocity of the pelvis, vtgt
is the target velocity, Am are the muscle activations, and

wstep, wvel and weff are the weights for the stepping
reward and velocity and effort costs.

IX. INSTALLATION PROCESS

Anaconda is necessary in order to run the simulations
shown in this paper. Anaconda will create a
virtual environment with all the necessary libraries
to avoid conflicts with libraries in your operating
system. Anaconda may be obtained from
https://docs.anaconda.com/anaconda/install/. The
following instructions have been given assuming that the
Anaconda has been successfully installed.

Fig. 3 (c). Curriculum Learning

Fig. 3. Model Learning

42 Indian Journal of Computer Science * March - June 2020

1. Getting Started

On Windows, open acommand prompt and type :

conda create -n opensim - rl -c kidzik opensim
python=3.6.1 activate opensim-rl

On Linux/OSX, run:

conda create -n opensim-rl -c kidzik opensim
python=3.6.1 source activate opensim-rl

These commands will create a virtual environment
on your computer with the necessary simulation
libraries installed. Next, we need to install our Python
reinforcement learning environment. Type (on all
platforms):

conda install -c conda-forge lapack git
pip install osim-rl

If the command python -c "import opensim" runs
smoothly, you are done! Otherwise NOT.

It is to be noted that the source opensim-rl activates
the anaconda virtual environment. It is needed to type it
every time Anaconda is opened.

2.BasicUsage

To execute 200 iterations of the simulation enter the
python interpreter runs the following :
from osim.env import L2ZM2019Env

env =L2M2019Env(visualize=True)
observation = env.reset()
foriinrange(200):

observation, reward, done, info =
env.step(env.action_space.sample())

The function env.action space.sample() returns a
random vector for muscle activations as shown in Fig. 4,
So, in this example, muscles are activated randomly
(muscles which belong to centre part from waist to leg are
active muscles and outer to centre muscles which are
covering inner muscles are inactive muscle). Clearly,
with this technique we won't go too far.

Our goal is to construct a controller, that is, a function
from the state space (current positions, velocities and
accelerations of joints) to action space (muscle
excitations), that will enable to model to travel as far as

possible in a fixed amount of time. Suppose you train a
neural network by mapping observations (the current state
of the model) to actions (muscle excitations), that is, you
have a function action=my controller(observation), then

total reward=0.0

foriinrange(200):

make a step given by the controller and record the state
and the reward observation, reward, done, info
=env.step(my_controller(observation))

total reward +=reward

if done:

break

#Yourreward is

print("Total reward %f" % total reward)

X. ABOUT POLICY

A. Representation

Stochastic policy was used. Both the function Pi, the value
function, ¥, were implemented using feed-forward neural
networks with two hidden layers, with 256 tanh units each.

The network input consisted of all 406 features
provided by the environment. The joint positions (x, and
z's) were made relative to the position of the pelvis. In
addition, the coordinate system was rotated around the
vertical axis to zero out the z component of the target
velocity vector. All the features were standardized with a

Fig. 4. Initial State of a Muscuskeleton Model

Indian Journal of Computer Science * March - June 2020 43

Fig. 5. Leg that can be Changed as per Requirement

running mean and variance.

Our network outputs a Bernoulli policy, which gives
samples from[0,1]. It was found that this policy was
leading to better result.

B. Policy Training

The arrangement parameters 0, ¢, and y were scholarly
with Proximal Policy Gradient with the Generalized
Advantage Estimator as the objective for the bit of
leeway work. An objective favorable position remedy
was applied so as to manage the non-stationarity of the
earth brought about as far as possible. The amendment
avoids the operator the end of the scene that is brought
about as far as possible by utilizing the worth gauge. As a
result, it improves the accuracy of the worth capacity,
thereby diminishing the fluctuation of the inclination
estimator.

C. Training Regime

The philosophy applied comprised of three phases: i)

worldwide instatement, ii) policy refinement and last
strategy calibrating.

PPO (Proximal policy Optimization) is vulnerable to
nearby minima. Being an on-approach calculation, each
cycle improves the strategy by a smidgen. As a result, it is
probably not going to roll out enormous conduct
improvements of the specialist. When the operator begins
to display a specific step, PPO (Proximal policy
optimization) can't change to a totally extraordinary
method of strolling later. To lighten this issue, during the
worldwide instatement stage, 50 runs were executed in
equal. After around 1000 cycles, two steps were chosen
depending on their presentation and conduct difference to
be improved in the ensuing stage.

The subsequent stage, arrangement refinement,
included more number of tests per run and went on until an
intermingling was observed. After the steps, parameter
decreasedto 1.

In the last stage, strategy adjusting, all the investigation
motivators were in the long run killed and the approach
was divided into two sub-approaches, one for each
assignment modes: 1) prepared set-go, utilized for the
initial 100 timesteps; and ii) ordinary activity for the
remainder of the scene.

Xl. CONCLUSION

At long last, in the wake of doing the way toward
expanding likelihood of positive prize, the model had the
option to walk and run appropriately.

The depicted preparing strategy brought about two
particular strides of comparative normal execution. Both
walks have fascinating qualities. The marginally better
approach begins forward with his prosthetic leg. At that
point pivots on initial stage scarcely proceeds with its
walk in reverse form in this particular time interval. It
appears that the preparation found that strolling in reverse
was a progressively proficient approach to manage the
progressions of the speed vector.

The other strategy begins with lifting his prosthetic leg;
he hops on this sound leg for the entire scene utilizing the
prosthetic leg to keep balance. This is, unquestionably, not
the most common method of strolling.

We have likewise presented proximal strategy
streamlining, a group of arrangement advancement
strategies that utilization different ages of stochastic angle
climb to play out every approach update. These strategies
have the steadiness and unwavering quality of trust-locale
techniques, yet are a lot more straightforward to execute,

44 Indian Journal of Computer Science * March - June 2020

requiring just barely any lines of code change to a vanilla
strategy inclination usage, material in increasingly broad
settings (for instance, when utilizing a joint design for the
approach and worth capacity), and have better generally
execution.

XIl. LIMITATIONS

This project can only be done when we have high
processing machines like GPU because training of data is
the toughest part and is not possible in normal processing
speed systems.

Also, on the off chance we have a go at gaining
without any preparation to accomplish some particular
speed, our initial examination uncovered that the
skeleton strolls with an assortment of signals that bring
about practically a similar exhibition in remunerations.
The operator either strolls a horizontal way (crab-like
strolling), knocking, or hauling one of'its leg. While none
of those strolling steps is characteristic, they are almost
indistinct in the prizes.

Nonetheless, in spite of the fact that we found that
those unreasonable steps can sensibly create static speed
strolling, they perform ineffectively concerning
solidness. Moving the model to other indicated speeds
turns into an issue, and the framework is inclined to fall,
particularly at the time of exchanging speeds.

This project can only be done with high processors
and heavy GPU system because training of model is a
very difficult task as it requires huge number of iteration
in order to get positive rewards. There are various sets of
combination which is finally implemented with the help
of Bernoulli in order to get different sets of positive
response.

REFERENCES

[1] K. Arulkumaran, N. Dilokthanakul, M. Shanahan,
and A.A. Bharath, "Classifying options for Deep
Reinforcement Learning,” 2016. Imperial College,
London. [Online]. Available:
https://arxiv.org/pdf/1604.08153.pdf

[2] P-L. Bacon, J. Harb, and D. Precup, "The option-
critic architecture," Reasoning and Learning Lab, McGill
University, 2016. [Online]. Available:
https://arxiv.org/pdf/1609.05140.pdf

[3] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft
actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor,” 2018.
[Online]. Available: https://arxiv.org/pdf/1801.01290.pdf

[4] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M.
Hessel, H. van Hasselt, and D. Silver, “Distributed
prioritized experience replay,” 2018. [Online]. Available:
https://arxiv.org/pdf/1803.00933.pdf

[5] G.Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft,
and K. Q. Weinberger, Snapshot ensembles: Train 1, get m
for free,” 2017. [Online]. Available:
https://arxiv.org/abs/1704.00109

[6] Z. Huang, S. Zhou, B. Zhuang, and X. Zhou, “Learning
to run with actor-critic ensemble,” 2017. [Online].
Available: arXiv:1712.08987

[7] I. Osband and C. Blundell, “A.P.B.V.R.: Deep
exploration via bootstrapped dqn,” 2016.

[8] W. Jas'kowski, O. R. Lykkebg, N. E. Toklu, N.E., F.
Trifterer, Z. Buk, J. Koutnik, and F. Gomez,
Reinforcement Learning to Run... Fast. In: S. Escalera, M.
Weimer (eds.) NIPS 2017 Competition Book. Springer,
2018.

[9] C.T.John, F. C. Anderson, J. S. Higginson, and S. L.
Delp, “Stabilisation of walking by intrinsic muscle
properties revealed in a three-dimensional muscle-driven
simulation,” Comput. Methods in Biomechanics and
Biomedical Eng., vol. 16, no. 4, 2013. Doi:
https://doi.org/10.1080/10255842.2011.627560

[10] L. Kidzin'ski, S. P. Mohanty, C. Ong, Z. Huang, S.
Zhou, A. Pechenko, A. Stelmaszczyk, P. Jarosik, M.
Pavlov, and S. Kolesnikov et al., “Learning to run
challenge solutions: Adapting reinforcement learning
methods for neuromusculoskeletal environments,” 2018.

[Online]. Available: https://arxiv.org/pdf/1804.00361.pdf

[11] L. Kidzin"ski, S. P. Mohanty, C. Ong, J. Hicks, S. F.
Carroll, S. Levine, M. Salathé, and S. L. Delp, “Learning
to run challenge: Synthesizing physiologically accurate
motion using deep reinforcement learning,” in S. Escalera,
M. Weimer (eds.) NIPS 2017 Competition Book. Springer,
Springer 2018. [Online]. Available:
https://arxiv.org/abs/1804.00198

Indian Journal of Computer Science * March - June 2020 45

About the Authors

Vikram Singh Chandel is pursuing P.G. Diploma in Data Science from Manipal University. He
completed B. E. (Information Technology) from University Institute of Technology — RGPV in2011. He
has worked in the IT industry as a software engineer from 2012 to 2018.

Dr. Subhabaha Pal is a well-acclaimed Data Science & Analytics academician whose name had
been included in the list ’20 Most Prominent Analytics & Data Science Academicians in India 2018’
published by Analytics India Magazine. He was also honoured as the ‘Most Supportive Faculty’ by Data
Science Society, Bulgaria. He is Ph.D. and M.Sc. in Statistics from the University of Calcutta and has
taught in well-known institutions like Manipal University, T. A. Pai Management Institute &
International Institute of Digital Technologies among many. He has 40 research paper publications to his
credit in well-known national & international indexed (SCOPUS and ABDC) journals and has also
published multiple books on Statistics & Machine Learning with well-known publishers . Dr. Subhabaha
Pal worked in different domains and verticals apart from Data Science which include SAP
Implementation & Corporate Risk Management in well-known organizations like Manipal Global
Education Services & Kuwait Petroleum Corporation. He was also instrumental in founding an
Analytics Company InstaDataHelp Analytics Services (www.instadatahelp.com) which provides
academic and consultancy services in analytics.

46 Indian Journal of Computer Science * March - June 2020

