
Manuscript Received : July 11, 2020 ; Revised : July 23, 2020 ; Accepted : July 25, 2020. Date of Publication : September 5, 2020.
*J. Philip is Multimedia Specialist with Philco Media, Kerala.
** M. Raju is Lecturer with Department of Commerce, Bishop Kurialacherry College for Women. Amalagiri, Kottayam, Kerala,
India - 686 561. (email : merin.raju12s@gmail.com)

Doi : 10.17010/ijcs/2020/v5/i4-5/154785

Abstract

Security threats are growing in a very fast manner ever since the introduction and widespread use of mobile computing devices
like smartphones became popular. So, there arises a necessity to introduce security mechanisms to deal with such threats in actual
operating system environments. Trusted Execution Environment (TEE) is one such successful approach where dedicated secure
hardware is used in combination with its own operating system software which works apart from the real execution environment for
achieving an isolation from the real world processing. However, TEE still lacks a common design strategy as its implementation of is
done by different manufacturers using their own hardware in a not so unified manner. So, here in this paper we try to study and
follow the design strategies of a TEE with its basic concepts to analyze its security impact over a normal execution environment. As
the use of mobile applications is growing day by day, the design strategies discussed in this document are mostly related and well
suited for mobile platforms. Existing software based security mechanisms in mobile platforms like application sandbox is
discussed in the later section of the document to analyze the type and the amount of vulnerabilities a TEE based system can fix over
such strategies. The main application areas that a TEE can be securely employed is also discussed in the final section of this
document to analyze the security impact that a TEE employed system can provide to a Rich Execution Environment.

Keywords : DRM, Kernel, Modular Programming, REE, Secure payment and authentication, TEE

Security Impact of Trusted Execution Environment in

Rich Execution Environment Based Systems

* Jithu Philip

 ** Merin Raju

I. INTRODUCTION

The wide spread use of a variety of digital media with
highly sophisticated software, and its extensive use over
the internet makes it highly vulnerable to attacks and
introduced a possibility for intruders and hackers to
manipulate the software's source code, thereby imposing
attacks on the entire system. Any digital system which is
compromised in such a manner seriously exposes the
security of the system by affecting the confidentiality and
integrity of its operations.

A. Need for a Hardware Based Isolated Execution

Environment

There lies a higher demand to ensure security at its
highest levels, especially in the case of multi-purpose
mobile computing devices like smartphones. Because of
its portable nature, most people make use of these devices
as a storage place to keep their highly sensitive personal

information. Apart from storing sensitive documents
either offline (inside the device) or online (any cloud
service that offers storage), the advances in processing
capabilities makes these devices compete with any
workstation kind of machines in almost all areas (except
for the use of high end professional softwares).

So, people exploring highly sensitive details like
banking credentials and personal user authentication
details must need a higher security mechanism to keep
these details safe in an encrypted storage as in most cases
there is a need to permanently store it and to process it
in an isolated manner in real time. So, a control in the
information flow between the evolving entities needs to
be achieved. If these principles are not followed while
exploring the details, there is a possibility that an intruder
taking control of an application can make use of flaws in
the source code to take advantage of it, thereby
compromising the security of the entire system [1].

Many software based security mechanisms, like

26 Indian Journal of Computer Science • July - October 2020

application sandbox, exist in operating systems to secure
machines in Rich Execution Environments. As specified
in a study related to Application Sandbox [2], it is proven
that it is a better mechanism for most operating systems
dealing with mobile platforms. It can work as a secure
way of isolating one application from another and protect
critical data and resources. However, due to lack of
dedicated hardware and controlled software (one which
is separate from the actual operating environment), the
restriction of information flow between the evolving
entities may not be possible in all cases. Even if most of
the applications work in an isolated environment
between themselves, there still arises the problem that
an attack is still possible through a fake / malicious /
unknown application which can exploit flaws in the
real operating system, that is, a software based isolation
may not be sufficient to hold attacks from intruders
who exploit flaws in the actual operating system
(Rich Operating System or Rich Execution
Environment) which exposes the contents of the system.

A common approach an intruder may make use of
to control the system by hacking an application is shown
in Fig. 1. In cases like these, a dedicated hardware
mechanism which is secure and is operated by its own
secure software (like a separate Trusted OS) other than
the actual Operating System is required.

Trusted Execution Environment (TEE) is one such
approach with an isolated execution environment
which makes use of kernel separation that enables
it to provide end-to-end security by protecting the
execution of authenticated code, confidentiality, system
integrity, authenticity, privacy and data access rights.
TEE's evolvement as a separate hardware along with
dedicated secure software is growing as an essential need
in most modern devices, especially in smartphones.

Many device manufacturers are currently making this as a
mandatory change, especially in their higher
end devices. Real world implementations like Secure
Enclave chips in iPhones, Titan M processors in Google
Pixel, and the use of ARM processors with TrustZone
configuration follow similar strategies.

B. Existing TEE Enabler Hardware Technologies

There exist different types of TEE enabler hardware
implementations. One such kind of implementation uses
CPU extensions where the processor is enabled with
circuits that enables specific TEE enabling functionality.
Some implementation like that includes the Arm
TrustZone [9], Intel Software Guard Extensions [14], Intel
System Management Mode (SMM) [15], and Sanctum
[16]. There is another category which is implemented as a
separate co-processor as part of the actual processor.
Apple Secure Enclave Processor [3], [17], and Qualcomm
Secure Processing Unit [18] are examples of these. The
co-processors implemented in this way hold a dedicated
non-volatile storage and RAM for reducing secured
shared resource to be directly accessed by normal mode
applications. This further secures the operations so that
the resources that belong to the secured mode can only be
accessed by programs running in secure mode.

There is another category of a TEE implementation
that makes use of a separate processor other than the
actual processor for secure operations. The Titan M
[19] chip used by Google for Pixel smartphones (from
Pixel 3 onwards) is one such category which enables
tamper detection by default. The Trusted Platform
Module [20] feature enables specific functions for trusted
boot and remote attestation. The Windows Virtual Secure
Mode (VSM) [21] as hypervisor enables two hierarchical
privilege modes VTL0 (for normal world) and VTL1

Malicious
Application

System Call Interface

Operating System Kernel

Banking Application

Storage Containing

Confidential Data

Normal
Application

Fig. 1. Attacker Taking Control of the System Through Malicious Application

 Exploitable Flaw

Indian Journal of Computer Science • July - October 2020 27

(for secure world). AMD Secure Encrypted
Virtualization (SEV) [22] is another technology that
encrypts the virtual machine memory using hardware
accelerated memory encryption.

The Intel Management Engine (ME) [23] is an
autonomous subsystem built into the intel's processor
chipsets. The ME is a firmware based on Minix OS that
runs on a separate processor in Intel based systems with
its own secure boot functionality.

II. DESIGN OF TRUSTED EXECUTION

ENVIRONMENT

Trusted Execution Environment (TEE) is a secure
area of the main processor which aims at the storage and
execution of sensitive data in an isolated environment.
Thus, the use of TEE ensures the confidentiality of data
along with the integrity of applications being processed.
The main advantage of using a TEE approach is that it
provides better security for applications and data by
executing them in an isolated environment, which offers
protection against common software attacks imposed in
Rich Operating System (Rich OS) or Rich Execution
Environments (REE).

The ability to provide end-to-end security is achieved
by the TEE's ability to offer safe execution of authorized
security software, known as Trusted Applications (TAs).
The major use of TEE is to protect the device and Trusted
Applications (TAs) assets through its isolated execution
environment.

The implementation of TEE is mostly done as a Dual
Execution Environment where one is a non-secure
environment (less secure environment where resources
are publicly available to all applications based on request)
and the other is a secure environment in which resources
and data are isolated between applications.

So regarding the basics, the major implementation
starts at hardware level by creating two environments that
can run simultaneously on a single processor chip with a
non-secure execution in one environment and a more
secure, isolated execution in the other. The developers
need to secure the system at the hardware stage as hacking
of systems related to the lowest physical layer to tamper
the boot process is also a known form of attack these days.
The actual hardware design of a TEE based
implementation may differ from those based on the
manufacturers' criteria. So every TEE implementation
does maintain different layers of isolated mechanisms to
achieve a design strategy like this. The dual execution
environment is a series of tasks executing in either the
Rich Execution Environment or the Trusted Execution
Environment with an intermediate environment that acts
as a context switch which works in between either of these
two execution environments.

The gateway, which is the TEE Entry and Exit
environment that handles the task switch between either of
these two execution environments usually works as
a monitor mode. The execution path of tasks through
different modes in a Dual Execution Environment is
shown in Fig. 2.

Fig. 2. Different Modes of Execution in a Dual Execution Environment

28 Indian Journal of Computer Science • July - October 2020

The Trusted Execution Environment (TEE) is normally a
part of the main processor or can be implemented as a
separate physical processor. As the major use cases of
TEEs are related to smartphones and technologies
involving mobile environments, different design
strategies have been followed by different
manufacturers. It is to be noted that, most of the existing
TEE implementations still lack a common unified
structure as the hardwares used in the implementation
process are still very different by their own nature.

The most exclusive TEE like implementation strategy
followed by popular manufacturers are :

Secure Enclave : Secure Enclave [3] is implemented as a

part of the main processor chip in iPhones by Apple Inc.,
which resides as a coprocessor in iOS device's system on
chip (SOC). It uses encrypted memory and does all
cryptographic operations for Data Protection. During its
hardware fabrication, each device's secure enclave is
assigned a unique ID, which cannot be changed and the
data that is written to the file system by Secure Enclave is
further encrypted with a key bound with the UID and an
anti-replay counter (which is stored in a dedicated
nonvolatile Integrated Circuit(IC)). The processing of
fingerprint and face data from Touch ID and Face ID
sensors for user authentication is also done by the Secure
Enclave.

Titan M is implemented as a dedicated separate chip

which is separate from the actual processor of the device
by Google in its Pixel devices [11], [12], [13].

Arm TrustZone : Another TEE system which relies on

trusted hardware is the Arm TrustZone [9], [10] that
has been implemented on the Arm processors (initially
in Cortex-A series of application processors and was
re-engineered for the new generat ion Arm
microcontrollers, Cortex-M) and focuses on securing
operations like user authentication,online
banking, DRM etc.

III. SECURITY ARCHITECTURE

OF TEE

As specified in section II, the design of TEE follows an
uncommon strategy due to the varying nature of
hardwares used by different manufacturers for its
implementation process. The only facts that are common
regarding the architecture are the general aspects.

The architecture of TEE must usually follow the
execution of instructions to be done as a Dual Execution
Environment, where one is a Rich Execution Environment
and the other is the Trusted Execution Environment. Both
of these environments are isolated from each other during
their execution, and hence, there is no direct interception
in between the execution. The security architecture of
TEE is shown in Fig. 3.

The normal applications that require any services from

Fig. 3. Security Architecture of Trusted Execution Environment

Normal Hardware

Rich OS

Normal Applications

System Calls for
Rich OS Support

Privileged Service for
applications requiring

Trusted OS support

TEE Communication
module

Rich Execution Environment

Trusted OS and TEE

Management

Trusted

Applications (TA’s)

Hardware, Firmware, Software for TEE operations

TEE Entry

& Exit

Environment

Secure Storage

with Hardware

Keys

Trusted

I/O

Trusted Execution

Environment

Trusted

App1

Trusted

App2

Indian Journal of Computer Science • July - October 2020 29

the devices' common hardware request such operations to
the Rich OS through system calls. The hardware used for
such operations are the normal processor, memory etc.
which do the execution of common applications.

For the execution of applications requiring higher
security, trusted hardware along with its trusted path
is used. The applications executing on the hardware
with TEE support are commonly termed as Trusted
Applications. The higher demand for applications to be
elevated and executed as trusted application is
increasingly growing in many areas like in the case of
banking applications, secure authentication and payment
systems, Digital Rights Management (DRM) in
multimedia related operations etc.

There are certain cases where a normal application
is requiring services from Trusted OS. In such cases, it
might request for elevated privileges (if verified and
signed properly) through the TEE communication
module. In most cases, there must be a TEE Entry & Exit
module in between the two execution environments to
do the authentication procedure, which acts as a monitor
mode in between the two. The processor where Trusted
Applications are executing can either be part of the actual
processor or as a separate chip (see Section (I) for
different TEE implementat ions by var ious
manufacturers).

The TEE hardware can contain firmware that holds
various instructions for TEE operations like code for
signing the operating system boot loader (Secure Boot))
[3], hardware keys for authenticating the actual user and
allowing access to the encrypted secure storage part.
There can also be a Trusted I/O which is operated by a
Trusted UI in Trusted apps. The content of TEE's secure
storage is not static and can be securely updated.

The Trusted Kernel in a Trusted OS manages the TEE
by making use of the design strategy of Separation
Kernels, which was actually introduced many years ago
and is described in the next section.

A. Separation Kernel

The separation kernel is one of the major design
components used in the design phase of TEE. The
separation kernel was initially introduced many years
ago [5]. It acts as a security kernel [6] to simulate
distributed systems. The major purpose of using a
separation kernel is that it divides the system into
different partitions and maintains a strong isolation
between them.

A strong definition regarding the separation kernel can be
found on the Separation Kernel Protection Profile (SKPP)
[7]. The SKPP defines separation kernel as “hardware
and/or firmware and/or software mechanisms whose
primary function is to establish, isolate, and control
information flow between the maintained partitions”.

The security requirements of designing a separation
kernel are based on four main security policies [8] :

Ä Data (spatial) Separation : Data within one partition

cannot be read or modified by other partitions.

Ä Sanitization (temporal separation) : Shared resource

use is restricted. So the use of shared resource cannot be
used to leak information between partitions.

Ä Control of information flow : Communication between

partitions cannot occur unless explicitly permitted.

Ä Fault isolation : A security breach or vulnerability in

one partition cannot be spread to other partitions.

The Trusted Execution Environment with a detailed view
of kernel separation is shown in Fig. 4.

The Separation Kernel which acts as a basic building
block of the Trusted Kernel consists of components for its
two core operations :

(1) Secure Scheduling

(2) Information Flow Control / Inter-world Inter Process

Communication (IPC) Manager

As described earlier, the separation kernel divides the
system that is under our consideration into different
partitions. To establish a proper workflow for each of
the trusted applications which is executing in the
TEE environment, applications are scheduled in such a
way that there is a better isolation between the working
entities (processes). The scheduler and IPC Manager in
the separation kernel secures these operations, thereby
accomplishing all of the security policies described above.

B. Modular Programming

As the major design component of TEE works with the
concept of Kernel Separation (discussed in section A), the
partitioned system along with its assets can be considered
to be operating as separate modules. The advantage of
decoupling application functionalities into independent
modules is that it provides the entire TEE a higher level of

30 Indian Journal of Computer Science • July - October 2020

reliability and security. So, it provides each individual
module a higher level of fault isolation and prevents each
module from creating a vulnerability for others.

For the secure communication between modules
through data sharing, TEE makes use of secure payloads
to be sent and received in between modules (by the use of
mechanisms like objects serialization).

IV. RELATED SOFTWARE BASED

DESIGN STRATEGIES IN MOBILE

OPERATING SYSTEMS

As specified in the previous sections, TEE employs a
hardware based execution environment, which makes
use of a separate processing chip with its own dedicated
software and/or firmware that creates a separate
processing environment in conjunction with the normal
operating system of the machine. So, as TEE holds a
separate secure operating system for its operations, it is
better to analyze some of the existing software based
traditional access control mechanisms in mobile
operating systems. One such security mechanism is the
application sandbox [2], which is described in the next
section.

Application Sandbox

Application sandbox is an access control technology

which is mostly enforced at kernel level of the Rich OS.
Sandboxing of applications is designed in such a way that
users have the provision to choose what they share with an
application. This allows users with the option that their
critical data and access to the system itself is protected in
its major share even if an application that is running in the
system is compromised and is vulnerable to attack.

A survey regarding the application sandbox
implementation in Android and iOS along with the
increasing number of critical vulnerabilities found on both
platforms are discussed [2], which gives a basic
user awareness regarding the topic. The design of an
application working in its sandbox directory in the mobile
operating system iOS [3] is shown in Fig. 5.

So, based on researches and studies regarding this
topic, it became known over the years that even if the
Application Sandbox restricts an app to only deal with the
allowed resources and data, it cannot be said that the
technology is safe from all kinds of threats and attacks.
One such attack is discussed in section I of this document
(Fig.1.). It is the case where a user exploits flaws in the
actual operating system from a malicious application,
takes control of other apps through the actual operating
system services and steals sensitive information.

So from this case, it is clear that an access control
mechanism which is based on an operating system
alone may not be sufficient in all cases. This is where a

Indian Journal of Computer Science • July - October 2020 31

Fig. 4. Trusted Execution Environment with Separation Kernel

Normal Hardware

Rich OS

Rich Execution Environment

Normal Applications

TEE Communication
module

Trusted Execution
Environment

Trusted Applications (TA’s)

Trusted
App1

Trusted
App2

Trusted Kernel

Information
flow control

Secure
Scheduling

Separation Kernel

Secure Storage
with Hardware

Keys

Trusted

I/O

TEE Entry
& Exit

Environment

Monitor Hardware, Firmware, Software

for TEE Operations

hardware based isolated execution environment other
than the actual environment of the Rich OS is needed
for achieving improved security. So, a TEE employment
with its design strategies discussed in earlier sections can
be an improvement for sessions requiring advanced
security in such cases.

The major application areas, like a banking
application where the user's sensitive details need to be
processed securely can make use of technologies like this
effectively. The efficient changes that a successfully
employed TEE can make to such an application
environment is discussed in the next section.

V. SECURITY ANALYSIS OF THE

MAJOR APPLICATION AREAS THAT

CAN USE TEE FOR IMPROVED

SECURITY

A. Digital Rights Management (DRM) in Multimedia

Digital Rights Management (DRM) covers a set of
access control technologies for protecting and restricting
the use of copyrighted works. The use of DRM becomes
widespread because of the fact that application areas
requiring protection of copyrighted contents is growing
in every aspects.

The major application areas making use of DRM policies
are in the case of protection and distribution of
copyrighted materials like, software and multimedia
content. DRM also enables hardware locks in cases of
proprietary hardware.

The general aspects followed in the distribution of
the encrypted multimedia content along with the KDM
holding the encrypted secret key of a Digital Cinema
Package (DCP) [4] is shown in Fig. 6. It uses an
asymmetric key pair (Two Level Encryption at the
Sender's End) for the secure distribution of the multimedia
content.

In this case, the multimedia content which is in raw
format containing the actual video and audio streams
is encoded to suitable format for representation. After
successful encoding, the encoded content needs to be sent
securely between the communicating entities. For that to
occur, the encoded content is encrypted using a secret key,
and the encrypted content is sent to the destination.

For achieving better security, the secret key itself is
encrypted using the public key of an asymmetric key pair
which is dependent on the sender and receiver. The
encrypted secret key is also sent to the receiver. So, the
receiver who holds the actual encrypted content along
with the encrypted secret key can now decrypt the actual
content.

For the decryption process to occur, the received
encrypted secret key is decrypted first using the private
key of the asymmetric key pair (which was used during the
encryption stage). The private key of the asymmetric key
pair is usually known to the receiver (usually hidden and
securely stored in a tamper resistant chip at the receiver's
end). In multimedia related operations, the corresponding
public key of this private key is made public to the sender
by the receiver for achieving transparency in operations.
Usually, the secure storage of private key and the
establishment of a public key related to that is done
at the manufacturing or connection establishment step
(whichever is required), as most of these are planned and
executed at the initiation stage.

Once the encrypted secret key is decrypted, that secret
key is used to decrypt the original content. So, in this case
a two stage encryption is done at the sender's end. A more
detailed description about the encoding and encryption of
a Digital Cinema Package can be found on the work [4]
which gives a reference about the needs of improving
security while distributing multimedia contents.

As shown in the DCP encoding and encryption process

Fig. 5. An iOS Application Operating Within its

Own Sandbox Directory

32 Indian Journal of Computer Science • July - October 2020

(Fig. 6.), the same concept can be used for the distribution
of online multimedia contents. Nowadays, a vast
majority of multimedia content is distributed to the user
as a form of streaming service with the help of mobile
applications. So in such scenarios, the same concept
discussed above can be used along with the
implementation of a TEE in the user side. If done so it can
securely execute the user application, and safely store the
private key of the asymmetric key pair which was used
for the decryption of the secret key at the receiver's end.

B. Secure Payment and Authentication

The introduction of mobile applications made users
with the facility to do banking through their smartphones
and tablets, apart from accessing the banking websites all
the time. So there arise the need to achieve a higher level
of security, as highly sensitive user authentication
patterns are to be executed in real time and the user data
needs to be stored inside the system. TEE can be
employed to secure a proper execution environment in

these cases too. A common usage of this is where in place
of a contactless payment that is employed in cases of
mobile payment and digital wallet services like Apple Pay,
Samsung Pay etc. the card information is digitized and
stored inside the device itself. In cases like this, TEE is
used in conjunction with Near Field Communication
(NFC) for communication, and a Secure Element for user
authentication details like Touch ID, Face ID is stored and
crosschecked.

Apart from contactless payments, TEE can also be
employed in executing and authenticating mobile
commerce applications like mobile wallets, peer-to-peer
payments, online banking applications etc. The real world
communication of a user application between user,
merchant, and bank with the support of a payment
gateway, and which works in a TEE is shown in Fig. 7.

The user in this case shares the order and payment
information with the merchant first. The merchant holding
the order and payment details processes it and the payment
details are forwarded to the payment gateway. The

Fig. 6. The Distribution Model of the Encrypted Multimedia Content Along with a KDM

Holding the Encrypted Secret Key of a Digital Cinema Package (DCP) with Basic

Encryption and Decryption (shown in steps (1,2,3,4))

Indian Journal of Computer Science • July - October 2020 33

payment gateway requests the bank to authenticate
the user before continuing any further. The authentication
to be completed is usually done by using a combination
of factors, especially because the case involved is based
on a mobile application. The use of a multi factor
authentication can be done in this case. Once the
authentication is complete, the payment process is
initiated.

The bank may or may not acknowledge the user
regarding this process. It is dependent on the type of
payment method used, for example, in cases like internet
banking, an OTP is sent to the user for confirmation.
Once the user receives this, he can respond back to the
gateway with the confirmation signal for processing the
payment. If that is executed, the bank processes the
payment, and once the payment is done, it sends an
acknowledgement regarding the payment to the user and
to the merchant. The payment gateway is closed on
successful processing of payment and the user
application is returned to the merchant's page which
shows further details regarding the executed order like
billing information etc.

The real world cases where the use of a TEE enabled
device can produce a significant impact in the secure
payment and authentication are discussed below :

Case 1 : User doing a contactless payment at a POS

terminal

Consider an example, where the user visits a merchant
and after purchase does the payment processing using a
Point of Sale (POS) terminal as a contactless payment.
Here in this case, normally the user's card based details are
digitized and stored inside the smartphone. So with the
support of TEE, the user makes a communication to the
POS terminal using Near Field Communication (NFC). In
this case, the authentication is usually done using a
biometric ID which was previously stored inside the TEE
secure storage. Most contactless payments usually does
not make use of any other confirmations like OTP in
majority of cases, and because of this reason, the
transaction amounts per communication is set to low.

Here, in this case TEE can be implemented in the user's
device which holds the digitized user's payment details for
contactless payments.

Fig. 7. The Real World Communication of a User Application Between User, Merchant,

and Bank With the Support of a Payment Gateway and Which Works in a TEE

34 Indian Journal of Computer Science • July - October 2020

Case 2 : User doing payment online

In this case, the user application works in conjunction
with the merchant, payment gateway and the bank for
a successful business transaction. Almost all of the
business transactions are initiated by the user after
interacting with the merchant and selecting the products
he / she needs. After completing the transaction, payment
needs to be done securely.

This is where the payment models are of varying
natures these days. Because of the wide options available
to the user, it can be done in many ways using mobile
applications. For this to be done, the use of a TEE can be
used for better authentication and secure payment.

So, the mobile application involved in this case, if
elevated as a trusted application can make use of the TEE
enabled hardware and trusted OS to work in an isolated
environment which protects itself from other entities.

Here in this case TEE can be implemented in the
user's device which executes the user application and
securely updates all of the steps shown in Fig. 7.

The authentication factors used in these cases are
different and are based on multiple factors with the use of
authentication schemes like Multi-factor Authentication
which is described in the next section.

Ä Multi-factor Authentication

The authentication schemes employed while using
mobile financial services and POS terminal may
depend on multiple factors (multi-factor authentication)
with different patterns to achieve better security. The
combination of multiple factors may be like :

(1) Use of a physical card (Credit, Debit).

(2) A PIN or a Password.

(3) A biometric ID (Face ID, Fingerprint or Touch ID,

Voice Authorization).

(4) Use of a specific network or GPS to identify location.

A two-step verification or two-step authentication is a
commonly used form of authentication scheme to
confirm a user's claimed identity by two factors. The two
factors may include something that is known to the user
such as a password and another factor that is unknown
to the user which is to be authenticated and sent by a
trusted party (like an OTP send over to the user by a bank
through SMS).

For most contactless payments to occur, TEE is suited to
store the Biometric ID related to the user. The process of
authentication is as follows:

(1) A reference template (Face ID, Touch ID, Vocal

Pattern) is scanned and stored initially while setting up the
authentication.

(2) During the execution of application, the authentication

validation is processed, as the user inputs the
corresponding pattern (Face ID, Touch ID, Vocal Pattern)
which was scanned and stored initially.

(3) A matching engine like a dedicated secure software is

executed which matches the template with the new pattern
which is scanned currently.

VI. CONCLUSION

The study of the basic TEE based design strategies
allowed us to focus through different security aspects
related to a dual execution environment approach. Since
TEE works within a separate environment from the Rich
Execution Environment, its implementation success
gained a huge advantage over many of the major security
flaws found in real world operating systems. The study
specifies the advantages of TEE over other existing
software based security mechanisms like Application
Sandbox and because of its security advancements it is a
better choice for users of modern mobile operating
systems. The only factor that is not clear up to now is the
uncommon design strategies followed by different
manufacturers. As TEE based implementations makes use
of both hardware and the software, its implementation
details are mostly hidden or different based on the
commercial types involved in these entities. Transparency
regarding this issue is still possible and is under
development as more common and unified approaches are
happening in the developer's world. The discussion
regarding the employment of TEE in major application
areas allowed us to provide better transparency regarding
this topic too. As the use of biometric based user
authentication technologies are increasing year by year,
we found it a necessity that a scope for betterment in
advanced TEE based systems exists and its is needed in
each and every consumer related device which requires
secure user authentication.

Indian Journal of Computer Science • July - October 2020 35

ACKNOWLEDGEMENT

The authors thank anonymous reviewers for their
valuable suggestions regarding the details of this
document.

REFERENCES

[1] “Introduction to Trusted Execution Environments,”
GlobalPlatform Inc., 2018. [Online]. Available:
h t t p s : / / g l o b a l p l a t f o r m . o r g / w p -
content/uploads/2018/05/Introduction-to-Trusted-
Execution-Environment-15May2018.pdf

[2] J. Philip and M. Raju, “A formal overview of
application sandbox in Android and iOS with the need to
secure sandbox against increasing number of malware
attacks,” Indian Journal of Computer Science, vol. 4, no.
3, pp. 32 – 40, 2019.

[3] J. Philip and M. Raju, “An overview about the
security architecture of the mobile operating system
iOS”, Indian Journal of Computer Science, vol. 4, no. 1,
pp. 13–18, 2019. DOI: 10.17010/ijcs/2019/v4/i1/142412

[4] J. Philip and M. Raju "Encoding and encryption of
digital cinema package," Indian Journal of Computer
Science, vol. 4, no. 5, pp. 7–17, 2019. DOI:
10.17010/ijcs/2019/v4/i5/149455

[5] J. M. Rushby, “Design and verification of secure
systems,” SIGOPS Oper. Syst. Rev., vol. 15, no. 5, pp.
1 2 – 2 1 , 1 9 8 1 . D O I :
https://doi.org/10.1145/1067627.806586

[6] J. Ames, Stanley R., M. Gasser, and R. R. Schell,
“Security kernel design and implementation: An
introduction,” Computer, vol. 16, no. 7, pp. 14–22, 1983.
DOI: https://doi.org/10.1109/MC.1983.1654439

[7] “U.S. government protection profile for separation
kernels in environments requiring high robustness,”
Information Assurance Directorate, June 29, 2007,
v e r s i o n 1 . 0 3 . [O n l i n e] . A v a i l a b l e :
https://www.commoncriteriaportal.org/files/ppfiles/pp_
skpp_hr_v1.03.pdf

[8] M. Sabt, M. Achemlal, and A. Bouabdallah, ” Trusted
execution environment: What it is, and what it is not.”
14th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, Aug
2 0 1 5 , H e l s i n k i , F i n l a n d . D O I :
10.1109/Trustcom.2015.357

[9] Arm TrustZone Technology. [Online]. Available:
https://developer.arm.com/ip-products/security-
ip/trustzone

[10] Introduction to Trusted Execution Environment:
A R M ' s Tr u s t Z o n e . [O n l i n e] . Av a i l a b l e :
https://blog.quarkslab.com/introduction-to-trusted-
execution-environment-arms-trustzone.html

[11] “The tiny chip that powers up pixel 3 security,” Wired.
[O n l i n e] . A v a i l a b l e :
https://www.wired.com/story/google-titan-m-security-
chip-pixel-3/

[12] R. Triggs, “Will Google’s Titan M make it harder for
the ROMing scene?,” 2018. [Online]. Available:
https://www.androidauthority.com/titan-m-security-
chip-915888/

[13] C. Hoffman, “Your smartphone has a special security
chip. Here’s how it works,” How-to Geek, 2018. [Online].
Available: https://www.howtogeek.com/387934/your-
smartphone-has-a-special-security-chip.-heres-how-it-
works/

[14] Intel, “Intel Software Guard Extensions,” 2019.
[Online]. Available: https://software.intel.com/en-us/sgx/

[15] R. R. Collins, “Intel’s system management mode.”
[O n l i n e] . A v a i l a b l e :
http://www.rcollins.org/ddj/Jan97/Jan97.html

[16] V. Costan, I. Lebedev, and S. Devadas, “Sanctum:
Minimal hardware extensions for strong software
isolation,” in USENIX Security Symposium. USENIX
Association, pp. 857–874, 2016.

[17] T. Mandt, M. Solnik, and D. Wang, “Demystifying
the secure enclave processor,” Azimuth Security, 2016.
[Online]. Available: https://www.blackhat.com/docs/us-
16/materials/us-16-Mandt-Demystifying-The-Secure-
Enclave-Processor.pdf

[18] Qualcomm, “Qualcomm Secure Processing Unit
SPU230 Core Security Target Lite,” 2019. [Online].
A v a i l a b l e :
https://www.commoncriteriaportal.org/files/epfiles/1045
b_pdf.pdf

[19] X. Xin, “Titan M makes Pixel 3 our most secure
p h o n e y e t , ” 2 0 1 8 . [O n l i n e] . Av a i l a b l e :
https://www.blog.google/products/pixel/titan-m-makes-
pixel-3-our-most-secure-phone-yet/

36 Indian Journal of Computer Science • July - October 2020

About the Authors

Jithu Philip received M. Sc. degree in Computer Science from School of Computer Sciences, Mahatma

Gandhi University, Kottayam, Kerala, India in 2014. He is currently working as Multimedia Specialist for

Philco Media, Kottayam, Kerala, India. His research interests are in the areas of Operating Systems and

Computer Security.

Merin Raju received M. Sc. degree in Computer Science from School of Computer Sciences, Mahatma

Gandhi University, Kottayam, Kerala, India in 2014. She is currently working as Lecturer (Computer Science)

with Department of Commerce, Bishop Kurialacherry College for Women, Amalagiri, Kottayam, Kerala,

India. Her research interests are focused on Computer Security.

[20] T. C. Group, “Trusted Platform Module (TPM),”
2 0 1 8 . [O n l i n e] . A v a i l a b l e :
https://trustedcomputinggroup.org/workgroups/trusted-
platform-module/

[21]“Virtualization-based Security (VBS),” 2017.
[Online]. Available: https://docs.microsoft.com/
e n - : u s / w i n d o w s - h a r d w a r e / d e s i g n / d e v i c e -
experiences/oem-vbs

[22] AMD, “AMD Secure Encrypted Virtualization
(S E V) , ” 2 0 1 9 . [O n l i n e] . A v a i l a b l e :
https://developer.amd.com/sev/

[23]“Getting Started with Intel Active Management
Technology (Intel AMT),” 2019. [Online]. Available:
https://software.intel.com/en-us/articles/gettingstarted-
with-intel-active-management-technology-amt

Indian Journal of Computer Science • July - October 2020 37

